Do you want to publish a course? Click here

The Test Function Conjecture for Local Models of Weil-restricted groups

108   0   0.0 ( 0 )
 Added by Timo Richarz
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $p$-adic local fields with $pgeq 5$. In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.



rate research

Read More

We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure, and their analogues in equal characteristic.
95 - Zhilin Luo 2020
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggporiginal}) for special orthogonal groups over any local fields of characteristic zero, which was already proved by Waldspurger over $p$-adic fields.
We confirm the Hanna Neumann conjecture for topologically finitely generated closed subgroups $U$ and $W$ of a nonsolvable Demushkin group $G$. Namely, we show that begin{equation*} sum_{g in U backslash G/W} bar d(U cap gWg^{-1}) leq bar d(U) bar d(W) end{equation*} where $bar d(K) = max{d(K) - 1, 0}$ and $d(K)$ is the least cardinality of a topological generating set for the group $K$.
93 - Olivier Benoist 2019
We give upper bounds for the level and the Pythagoras number of function fields over fraction fields of integral Henselian excellent local rings. In particular, we show that the Pythagoras number of $mathbb{R}((x_1,dots,x_n))$ is $leq 2^{n-1}$, which answers positively a question of Choi, Dai, Lam and Reznick.
We study the singularities of integral models of Shimura varieties and moduli stacks of shtukas with parahoric level structure. More generally our results apply to the Pappas-Zhu and Levin mixed characteristic parahoric local models, and to their equal characteristic analogues. For any such local model we prove under minimal assumptions that the entire local model is normal with reduced special fiber and, if $p>2$, it is also Cohen-Macaulay. This proves a conjecture of Pappas and Zhu, and shows that the integral models of Shimura varieties constructed by Kisin and Pappas are Cohen-Macaulay as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا