Do you want to publish a course? Click here

Quantum-based vacuum metrology at NIST

54   0   0.0 ( 0 )
 Added by Julia Scherschligt
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The measurement science in realizing and disseminating the unit for pressure in the International System of Units (SI), the pascal (Pa), has been the subject of much interest at the National Institute of Standards and Technology (NIST). Modern optical-based techniques for pascal metrology have been investigated, including multi-photon ionization and cavity ringdown spectroscopy. Work is ongoing to recast the pascal in terms of quantum properties and fundamental constants and in so doing, make vacuum metrology consistent with the global trend toward quantum-based metrology. NIST has ongoing projects that interrogate the index of refraction of a gas using an optical cavity for low vacuum, and count background particles in high vacuum to extreme high vacuum using trapped laser-cooled atoms.



rate research

Read More

A tabletop-sized Kibble balance (KIBB-g1) designed to directly realize mass at the gram-level range with uncertainties on the order of parts in 10$^6$ has been developed at the National Institute of Standards and Technology (NIST). The masses of a nominally 5,g and 1,g weight were determined with 1-$sigma$ standard uncertainties of 9.0,$upmu$g and 6.7,$upmu$g, respectively. The corresponding relative uncertainties are $1.8times 10^{-6}$ and $6.3times 10^{-6}$. The construction of the instrument, capabilities, and full uncertainty budgets are presented in this manuscript.
Although quantum mechanics (QM) and quantum field theory (QFT) are highly successful, the seemingly simplest state -- vacuum -- remains mysterious. While the LHC experiments are expected to clarify basic questions on the structure of QFT vacuum, much can still be done at lower energies as well. For instance, experiments like PVLAS try to reach extremely high sensitivities, in their attempt to observe the effects of the interaction of visible or near-visible photons with intense magnetic fields -- a process which becomes possible in quantum electrodynamics (QED) thanks to the vacuum fluctuations of the electronic field, and which is akin to photon-photon scattering. PVLAS is now close to data-taking and if it reaches the required sensitivity, it could provide important information on QED vacuum. PVLAS and other similar experiments face great challenges as they try to measure an extremely minute effect. However, raising the photon energy greatly increases the photon-photon cross-section, and gamma rays could help extract much more information from the observed light-light scattering. Here we discuss an experimental design to measure photon-photon scattering close to the peak of the photon-photon cross-section, that could fit in the proposed construction of an FEL facility at the Cabibbo Lab near Frascati (Rome, Italy).
118 - P. Lv , G.F. Cao , L.J. Wen 2019
Characterization of the vacuum ultraviolet (VUV) reflectance of silicon photomultipliers (SiPMs) is important for large-scale SiPM-based photodetector systems. We report the angular dependence of the specular reflectance in a vacuum of SiPMs manufactured by Fondazionc Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) over wavelengths ranging from 120 nm to 280 nm. Refractive index and extinction coefficient of the thin silicon-dioxide film deposited on the surface of the FBK SiPMs are derived from reflectance data of a FBK silicon wafer with the same deposited oxide film as SiPMs. The diffuse reflectance of SiPMs is also measured at 193 nm. We use the VUV spectral dependence of the optical constants to predict the reflectance of the FBK silicon wafer and FBK SiPMs in liquid xenon.
Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3e-7 at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDRs frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time.
In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا