No Arabic abstract
Most of the existing multi-relational network embedding methods, e.g., TransE, are formulated to preserve pair-wise connectivity structures in the networks. With the observations that significant triangular connectivity structures and parallelogram connectivity structures found in many real multi-relational networks are often ignored and that a hard-constraint commonly adopted by most of the network embedding methods is inaccurate by design, we propose a novel representation learning model for multi-relational networks which can alleviate both fundamental limitations. Scalable learning algorithms are derived using the stochastic gradient descent algorithm and negative sampling. Extensive experiments on real multi-relational network datasets of WordNet and Freebase demonstrate the efficacy of the proposed model when compared with the state-of-the-art embedding methods.
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.
A neighborhood graph, which represents the instances as vertices and their relations as weighted edges, is the basis of many semi-supervised and relational models for node labeling and link prediction. Most methods employ a sequential process to construct the neighborhood graph. This process often consists of generating a candidate graph, pruning the candidate graph to make a neighborhood graph, and then performing inference on the variables (i.e., nodes) in the neighborhood graph. In this paper, we propose a framework that can dynamically adapt the neighborhood graph based on the states of variables from intermediate inference results, as well as structural properties of the relations connecting them. A key strength of our framework is its ability to handle multi-relational data and employ varying amounts of relations for each instance based on the intermediate inference results. We formulate the link prediction task as inference on neighborhood graphs, and include preliminary results illustrating the effects of different strategies in our proposed framework.
The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages in analyzing large-scale networks. However, most existing NRL methods are designed to preserve the local topology of a network, they fail to capture the global topology. To tackle this issue, we propose a new NRL framework, named HSRL, to help existing NRL methods capture both the local and global topological information of a network. Specifically, HSRL recursively compresses an input network into a series of smaller networks using a community-awareness compressing strategy. Then, an existing NRL method is used to learn node embeddings for each compressed network. Finally, the node embeddings of the input network are obtained by concatenating the node embeddings from all compressed networks. Empirical studies for link prediction on five real-world datasets demonstrate the advantages of HSRL over state-of-the-art methods.
Network embedding is aimed at mapping nodes in a network into low-dimensional vector representations. Graph Neural Networks (GNNs) have received widespread attention and lead to state-of-the-art performance in learning node representations. However, most GNNs only work in unsigned networks, where only positive links exist. It is not trivial to transfer these models to signed directed networks, which are widely observed in the real world yet less studied. In this paper, we first review two fundamental sociological theories (i.e., status theory and balance theory) and conduct empirical studies on real-world datasets to analyze the social mechanism in signed directed networks. Guided by related sociological theories, we propose a novel Signed Directed Graph Neural Networks model named SDGNN to learn node embeddings for signed directed networks. The proposed model simultaneously reconstructs link signs, link directions, and signed directed triangles. We validate our models effectiveness on five real-world datasets, which are commonly used as the benchmark for signed network embedding. Experiments demonstrate the proposed model outperforms existing models, including feature-based methods, network embedding methods, and several GNN methods.
Network Embedding has been widely studied to model and manage data in a variety of real-world applications. However, most existing works focus on networks with single-typed nodes or edges, with limited consideration of unbalanced distributions of nodes and edges. In real-world applications, networks usually consist of billions of various types of nodes and edges with abundant attributes. To tackle these challenges, in this paper we propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning. Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions and propose a unified framework for the embedding learning. We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba. The results empirically demonstrate that MSM can achieve relatively significant gains over previous state-of-arts on link prediction.