No Arabic abstract
Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the test dataset is of great importance to gain confidence of the trained models. Using an inadequate test dataset, DL models that have achieved high test accuracy may still lack generality and robustness. In traditional software testing, mutation testing is a well-established technique for quality evaluation of test suites, which analyzes to what extent a test suite detects the injected faults. However, due to the fundamental difference between traditional software and deep learning-based software, traditional mutation testing techniques cannot be directly applied to DL systems. In this paper, we propose a mutation testing framework specialized for DL systems to measure the quality of test data. To do this, by sharing the same spirit of mutation testing in traditional software, we first define a set of source-level mutation operators to inject faults to the source of DL (i.e., training data and training programs). Then we design a set of model-level mutation operators that directly inject faults into DL models without a training process. Eventually, the quality of test data could be evaluated from the analysis on to what extent the injected faults could be detected. The usefulness of the proposed mutation testing techniques is demonstrated on two public datasets, namely MNIST and CIFAR-10, with three DL models.
Mutation testing can be used to assess the fault-detection capabilities of a given test suite. To this aim, two characteristics of mutation testing frameworks are of paramount importance: (i) they should generate mutants that are representative of real faults; and (ii) they should provide a complete tool chain able to automatically generate, inject, and test the mutants. To address the first point, we recently proposed an approach using a Recurrent Neural Network Encoder-Decoder architecture to learn mutants from ~787k faults mined from real programs. The empirical evaluation of this approach confirmed its ability to generate mutants representative of real faults. In this paper, we address the second point, presenting DeepMutation, a tool wrapping our deep learning model into a fully automated tool chain able to generate, inject, and test mutants learned from real faults. Video: https://sites.google.com/view/learning-mutation/deepmutation
Deep learning (DL) has achieved remarkable progress over the past decade and been widely applied to many safety-critical applications. However, the robustness of DL systems recently receives great concerns, such as adversarial examples against computer vision systems, which could potentially result in severe consequences. Adopting testing techniques could help to evaluate the robustness of a DL system and therefore detect vulnerabilities at an early stage. The main challenge of testing such systems is that its runtime state space is too large: if we view each neuron as a runtime state for DL, then a DL system often contains massive states, rendering testing each state almost impossible. For traditional software, combinatorial testing (CT) is an effective testing technique to reduce the testing space while obtaining relatively high defect detection abilities. In this paper, we perform an exploratory study of CT on DL systems. We adapt the concept in CT and propose a set of coverage criteria for DL systems, as well as a CT coverage guided test generation technique. Our evaluation demonstrates that CT provides a promising avenue for testing DL systems. We further pose several open questions and interesting directions for combinatorial testing of DL systems.
Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the commonly used neuron coverage metrics by existing DL testing approaches are not correlated to model robustness. It is also not an effective measurement on the confidence of the model robustness after testing. In this work, we address this gap by proposing a novel testing framework called Robustness-Oriented Testing (RobOT). A key part of RobOT is a quantitative measurement on 1) the value of each test case in improving model robustness (often via retraining), and 2) the convergence quality of the model robustness improvement. RobOT utilizes the proposed metric to automatically generate test cases valuable for improving model robustness. The proposed metric is also a strong indicator on how well robustness improvement has converged through testing. Experiments on multiple benchmark datasets confirm the effectiveness and efficiency of RobOT in improving DL model robustness, with 67.02% increase on the adversarial robustness that is 50.65% higher than the state-of-the-art work DeepGini.
Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.
Mutation testing is a well-established technique for assessing a test suites quality by injecting artificial faults into production code. In recent years, mutation testing has been extended to machine learning (ML) systems, and deep learning (DL) in particular; researchers have proposed approaches, tools, and statistically sound heuristics to determine whether mutants in DL systems are killed or not. However, as we will argue in this work, questions can be raised to what extent currently used mutation testing techniques in DL are actually in line with the classical interpretation of mutation testing. We observe that ML model development resembles a test-driven development (TDD) process, in which a training algorithm (`programmer) generates a model (program) that fits the data points (test data) to labels (implicit assertions), up to a certain threshold. However, considering proposed mutation testing techniques for ML systems under this TDD metaphor, in current approaches, the distinction between production and test code is blurry, and the realism of mutation operators can be challenged. We also consider the fundamental hypotheses underlying classical mutation testing: the competent programmer hypothesis and coupling effect hypothesis. As we will illustrate, these hypotheses do not trivially translate to ML system development, and more conscious and explicit scoping and concept mapping will be needed to truly draw parallels. Based on our observations, we propose several action points for better alignment of mutation testing techniques for ML with paradigms and vocabularies of classical mutation testing.