Do you want to publish a course? Click here

Super sensitivity and super resolution with quantum teleportation

205   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.

rate research

Read More

81 - J. H. Xu , A. X. Chen , W. Yang 2019
Performing homodyne detection at one port of squeezed-state light interferometer and then binarzing measurement data are important to achieve super-resolving and super-sensitive phase measurements. Here we propose a new data-processing technique by dividing the measurement quadrature into three bins (equivalent to a multi-outcome measurement), which leads to a higher improvement in the phase resolution and the phase sensitivity under realistic experimental condition. Furthermore, we develop a new phase-estimation protocol based on a combination of the inversion estimators of each outcome and show that the estimator can saturate the Cramer-Rao lower bound, similar to asymptotically unbiased maximum likelihood estimator.
302 - Lan Zhou , H. Dong , Yu-xi Liu 2008
We study single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array. We find that a single-photon can be totally reflected by a single two-level system. However, two separate two-level systems can also create, between them, single-photon quasi-bound states. Therefore, a single two-level system in the cavity array can act as a mirror while a different type of cavity can be formed by using two two-level systems, acting as tunable mirrors, inside two separate cavities in the array. In analogy with superlattices in solid state, we call this new cavity inside a coupled-cavity array a super-cavity. This supercavity is the quantum analog of Fabry-Perot interferometers. Moreover, we show that the physical properties of this quantum super-cavity can be adjusted by changing the frequencies of these two-level systems.
We demonstrate the super-resolution localization of the nitrogen vacancy centers in diamond by a novel fluorescence photoswitching technique based on coherent quantum control. The photoswitching is realized by the quantum phase encoding based on pulsed magnetic field gradient. Then we perform super-resolution imaging and achieve a localizing accuracy better than 1.4 nm under a scanning confocal microscope. Finally, we show that the quantum phase encoding plays a dominant role on the resolution, and a resolution of 0.15 nm is achievable under our current experimental condition. This method can be applied in subnanometer scale addressing and control of qubits based on multiple coupled defect spins.
We introduce a super-sensitive phase measurement technique that yields the Heisenberg limit without using either a squeezed state or a many-particle entangled state. Instead, we use a many-particle separable quantum state to probe the phase and we then retrieve the phase through single-particle interference. The particles that physically probe the phase are never detected. Our scheme involves no coincidence measurement or many-particle interference and yet exhibits phase super-resolution. We also analyze in detail how the loss of probing particles affects the measurement sensitivity and find that the loss results in the generation of many-particle entanglement and the reduction of measurement sensitivity. When the loss is maximum, the system produces a many-particle Greenberger-Horne-Zeilinger (GHZ) state, and the phase measurement becomes impossible due to very high phase uncertainty. In striking contrast to the super-sensitive phase measurement techniques that use entanglement involving two or more particles as a key resource, our method shows that having many-particle entanglement can be counterproductive in quantum metrology.
96 - Wenlin Gong , , Shensheng Han 2009
For ghost imaging, pursuing high resolution images and short acquisition times required for reconstructing images are always two main goals. We report an image reconstruction algorithm called compressive sampling (CS) reconstruction to recover ghost images. By CS reconstruction, ghost imaging with both super-resolution and a good signal-to-noise ratio can be obtained via short acquisition times. Both effect influencing and approaches further improving the resolution of ghost images via CS reconstruction, relationship between ghost imaging and CS theory are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا