Do you want to publish a course? Click here

HST followup observations of two bright z ~ 8 candidate galaxies from the BoRG pure-parallel survey

57   0   0.0 ( 0 )
 Added by Rachael Livermore
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present followup imaging of two bright (L > L*) galaxy candidates at z > 8 from the Brightest of Reionizing Galaxies (BoRG) survey with the F098M filter on HST/WFC3. The F098M filter provides an additional constraint on the flux blueward of the spectral break, and the observations are designed to discriminate between low- and high-z photometric redshift solutions for these galaxies. Our results confirm one galaxy, BoRG 0116+1425 747, as a highly probable z ~ 8 source, but reveal that BoRG 0116+1425 630 - previously the brightest known z > 8 candidate (mAB = 24.5) - is likely to be a z ~ 2 interloper. As this source was substantially brighter than any other z > 8 candidate, removing it from the sample has a significant impact on the derived UV luminosity function in this epoch. We show that while previous BoRG results favored a shallow power-law decline in the bright end of the luminosity function prior to reionization, there is now no evidence for departure from a Schechter function form and therefore no evidence for a difference in galaxy formation processes before and after reionization.



rate research

Read More

We present the first results and design from the redshift z~9-10 Brightest of the Reionizing Galaxies {it Hubble Space Telescope} survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from {lambda}=0.35{mu}m to {lambda}=1.7{mu}m. We analyze the initial ~130 arcmin$^2$ of area over 28 independent lines of sight (~25% of the total planned) to search for z>7 galaxies using a combination of Lyman break and photometric redshift selections. From an effective comoving volume of (5-25) $times 10^5$ Mpc$^3$ for magnitudes brighter than $m_{AB}=26.5-24.0$ in the $H_{160}$-band respectively, we find five galaxy candidates at z~8.3-10 detected at high confidence (S/N>8), including a source at z~8.4 with mAB=24.5 (S/N~22), which, if confirmed, would be the brightest galaxy identified at such early times (z>8). In addition, BoRG[z9-10] data yield four galaxies with $7.3 lesssim z lesssim 8$. These new Lyman break galaxies with m$lesssim26.5$ are ideal targets for follow-up observations from ground and space based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.
We report on the discovery of three especially bright candidate $z_{phot} gtrsim 8$ galaxies. Five sources were targeted for follow-up with HST/WFC3, selected from a larger sample of 16 bright ($24.8 lesssim Hlesssim25.5$~mag) candidate $zgtrsim 8$ LBGs identified over the 1.6 degrees$^2$ of the COSMOS/UltraVISTA field. These were identified as Y and J dropouts by leveraging the deep (Y-to-$K_{S} sim 25.3-24.8$~mag, $5sigma$) NIR data from the UltraVISTA DR3 release, deep ground based optical imaging from the CFHTLS and Subaru Suprime Cam programs and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprime Cam g, r, i, z and Y band data, we confirm that 3/5 galaxies have robust $z_{phot}sim8.0-8.7$, consistent with the initial selection. The remaining 2/5 galaxies have a nominal $z_{phot}sim2$. However, if we use the HST data alone, these objects have increased probability of being at $zsim9$. Furthermore, we measure mean UV continuum slopes $beta=-1.91pm0.26$ for the three $zsim8-9$ galaxies, marginally bluer than similarly luminous $zsim4-6$ in CANDELS but consistent with previous measurements of similarly luminous galaxies at $zsim7$. The circularized effective radius for our brightest source is $0.9pm0.2$ kpc, similar to previous measurements for a bright $zsim11$ galaxy and bright $zsim7$ galaxies. Finally, enlarging our sample to include the six brightest $zsim8$ LBGs identified over UltraVISTA (i.e., including three other sources from Labbe et al. 2017, in prep.) we estimate for the first time the volume density of galaxies at the extreme bright ($M_{UV}sim-22$~mag) end of the $zsim8$ UV LF. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double power-law form.
Looking for bright galaxies born in the early universe is fundamental to investigating the Epoch of Reionization, the era when the first stars and galaxies ionized the intergalactic medium. We utilize Hubble Space Telescope pure parallel imaging to select galaxy candidates at a time 500 to 650 million years after the Big Bang, which corresponds to redshifts z ~ 8-10. These data come from the Brightest of Reionizing Galaxies Survey (BoRG) Cycle 22 dataset, which consists of pure-parallel imaging in ~ 90 different lines of sight that sum up to an area of ~ 420 arcmin^2. This survey uses five filters and has the advantage (compared to the Cycle 21 BoRG program) of including imaging in the JH140 band, covering continuous wavelengths from the visible to near-infrared (lambda = 0.35um - 1.7um). This allows us to perform reliable selection of galaxies at z>8 using the photometric redshift technique. We use these galaxy candidates to constrain the bright end of the rest-frame ultraviolet luminosity function in this epoch. These candidates are excellent targets for follow-up observations, particularly with the James Webb Space Telescope.
We utilize deep near-infrared survey data from the UltraVISTA fourth data release (DR4) and the VIDEO survey, in combination with overlapping optical and Spitzer data, to search for bright star-forming galaxies at $z gtrsim 7.5$. Using a full photometric redshift fitting analysis applied to the $sim 6,{rm deg}^2$ of imaging searched, we find 27 Lyman-break galaxies (LBGs), including 20 new sources, with best-fitting photometric redshifts in the range $7.4 < z < 9.1$. From this sample we derive the rest-frame UV luminosity function (LF) at $z = 8$ and $z = 9$ out to extremely bright UV magnitudes ($M_{rm UV} simeq -23$) for the first time. We find an excess in the number density of bright galaxies in comparison to the typically assumed Schechter functional form derived from fainter samples. Combined with previous studies at lower redshift, our results show that there is little evolution in the number density of very bright ($M_{rm UV} sim -23$) LBGs between $z simeq 5$ and $zsimeq 9$. The tentative detection of an LBG with best-fit photometric redshift of $z = 10.9 pm 1.0$ in our data is consistent with the derived evolution. We show that a double power-law fit with a brightening characteristic magnitude ($Delta M^*/Delta z simeq -0.5$) and a steadily steepening bright-end slope ($Delta beta/Delta z simeq -0.5$) provides a good description of the $z > 5$ data over a wide range in absolute UV magnitude ($-23 < M_{rm UV} < -17$). We postulate that the observed evolution can be explained by a lack of mass quenching at very high redshifts in combination with increasing dust obscuration within the first $sim 1 ,{rm Gyr}$ of galaxy evolution.
The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) enabled the search for the first galaxies observed at z ~ 8 - 11 (500 - 700 Myr after the Big Bang). To continue quantifying the number density of the most luminous galaxies (M_AB ~ -22.0) at the earliest epoch observable with HST, we search for z ~ 10 galaxies (F125W-dropouts) in archival data from the Brightest of Reionizing Galaxies (BoRG[z8]) survey, originally designed for detection of z ~ 8 galaxies (F098M-dropouts). By focusing on the deepest 293 arcmin^2 of the data along 62 independent lines of sight, we identify six z ~ 10 candidates satisfying the color selection criteria, detected at S/N > 8 in F160W with M_AB = -22.8 to -21.1 if at z = 10. Three of the six sources, including the two brightest, are in a single WFC3 pointing (~ 4 arcmin^2), suggestive of significant clustering, which is expected from bright galaxies at z ~ 10. However, the two brightest galaxies are too extended to be likely at z ~ 10, and one additional source is unresolved and possibly a brown dwarf. The remaining three candidates have m_AB ~ 26, and given the area and completeness of our search, our best estimate is a number density of sources that is marginally higher but consistent at 2{sigma} with searches in legacy fields. Our study highlights that z ~ 10 searches can yield a small number of candidates, making tailored follow-ups of HST pure-parallel observations viable and effective.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا