No Arabic abstract
We present an analysis of spectrosopic and astrometric data from APOGEE-2 and Gaia DR2 to identify structures towards the Orion Complex. By applying a hierarchical clustering algorithm to the 6-dimensional stellar data, we identify spatially and/or kinematically distinct groups of young stellar objects with ages ranging from 1 to 12 Myr. We also investigate the star forming history within the Orion Complex, and identify peculiar sub-clusters. With this method we reconstruct the older populations in the regions that are presently largely devoid of molecular gas, such as Orion C (which includes the $sigma$ Ori cluster), and Orion D (the population that traces Ori OB1a, OB1b, and Orion X). We report on the distances, kinematics, and ages of the groups within the Complex. The Orion D groups is in the process of expanding. On the other hand, Orion B is still in the process of contraction. In $lambda$ Ori the proper motions are consistent with a radial expansion due to an explosion from a supernova; the traceback age from the expansion exceeds the age of the youngest stars formed near the outer edges of the region, and their formation would have been triggered when they were half-way from the cluster center to their current positions. We also present a comparison between the parallax and proper motion solutions obtained by Gaia DR2, and those obtained towards star-forming regions by Very Long Baseline Array.
Due to its proximity, the Orion star forming region is often used as a proxy to study processes related to star formation and to observe young stars in the environment they were born in. With the release of Gaia DR2, the distance measurements to the Orion complex are now good enough that the three dimensional structure of the complex can be explored. Here we test the hypothesis that, due to non-trivial structure and dynamics, and age spread in the Orion complex, the chemical enrichment of youngest stars by early core-collapse supernovae can be observed. We obtained spectra of 794 stars of the Orion complex with the HERMES spectrograph at the Anglo Australian telescope as a part of the GALAH and GALAH-related surveys. We use the spectra of $sim300$ stars to derive precise atmospheric parameters and chemical abundances of 25 elements for 15 stellar clusters in the Orion complex. We demonstrate that the Orion complex is chemically homogeneous and that there was no self-pollution of young clusters by core-collapse supernovae from older clusters; with a precision of 0.02 dex in relative alpha-elements abundance and 0.06 dex in oxygen abundance we would have been able to detect pollution from a single supernova, given a fortunate location of the SN and favourable conditions for ISM mixing. We estimate that the supernova rate in the Orion complex was very low, possibly producing no supernova by the time the youngest stars of the observed population formed (from around 21 to 8 Myr ago).
The giant HII region W31 hosts the populous star cluster W31-CL and others projected on or in the surroundings. The most intriguing object is the stellar cluster SGR1806-20, which appears to be related to a Luminous Blue Variable (LBV) - a luminous supergiant star. We used the deep VVV J-,H-and K$_s$-bands photometry combined with 2MASS data in order to address the distance andother physical and structural properties of the clusters W31-CL, BDS 113 and SGR1806-20. Field-decontaminated photometry was used to analyse colour-magnitude diagrams and stellar radial density profiles, using procedures that our group has developed and employed in previous studies. We concludethat the clusters W31-CL and BDS113 are located at 4.5kpc and 4.8kpc and have ages of 0.5Myr and 1Myr, respectively. This result, together with the pre-main sequence (PMS) distribution in the colour-magnitude diagram, characterises them as members of the W31 complex. The present photometry detects the stellar content, addressed in previous spectroscopic classifications, in the direction of thecluster SGR1806-20, including the LBV, WRs, and foreground stars. We derive an age of 10$pm$4Myr and a distance of d=8.0$pm$1.95kpc. The cluster is extremely absorbed, with AV= 25mag. Thepresent results indicate that SGR1806-20 is more distant by a factor 1.8 with respect to the W31 complex, and thus not physically related to it.
Context: The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open clusters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.
Using the Very Long Baseline Array (VLBA) we performed a high resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated with the presence of HII regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role, as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.
Following the recent discovery of a large population of young stars in front of the Orion Nebula, we carried out an observational campaign with the DECam wide-field camera covering ~10~deg^2 centered on NGC 1980 to confirm, probe the extent of, and characterize this foreground population of pre-main-sequence stars. We confirm the presence of a large foreground population towards the Orion A cloud. This population contains several distinct subgroups, including NGC1980 and NGC1981, and stretches across several degrees in front of the Orion A cloud. By comparing the location of their sequence in various color-magnitude diagrams with other clusters, we found a distance and an age of 380pc and 5~10Myr, in good agreement with previous estimates. Our final sample includes 2123 candidate members and is complete from below the hydrogen-burning limit to about 0.3Msun, where the data start to be limited by saturation. Extrapolating the mass function to the high masses, we estimate a total number of ~2600 members in the surveyed region. We confirm the presence of a rich, contiguous, and essentially coeval population of about 2600 foreground stars in front of the Orion A cloud, loosely clustered around NGC1980, NGC1981, and a new group in the foreground of the OMC-2/3. For the area of the cloud surveyed, this result implies that there are more young stars in the foreground population than young stars inside the cloud. Assuming a normal initial mass function, we estimate that between one to a few supernovae must have exploded in the foreground population in the past few million years, close to the surface of Orion A, which might be responsible, together with stellar winds, for the structure and star formation activity in these clouds. This long-overlooked foreground stellar population is of great significance, calling for a revision of the star formation history in this region of the Galaxy.