No Arabic abstract
Using the Very Long Baseline Array (VLBA) we performed a high resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated with the presence of HII regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role, as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.
We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only 4 of the 77 OHMs have existing satellite line observations in the literature. In 5 sources, satellite line emission is detected, with 3 of the 5 sources re-detections of previously published sources. The 2 sources with new detections of satellite line emission are IRAS F10173+0829, which was detected at 1720 MHz, and IRAS F15107+0724, for which both the 1612 MHz and 1720 MHz lines were detected. In IRAS F15107+0724, the satellite lines are partially conjugate, as 1720 MHz absorption and 1612 MHz emission have the same structure at some velocities within the source, along with additional broader 1612 MHz emission. This is the first observed example of conjugate satellite lines in an OHM. In the remaining sources, no satellite line emission is observed. The detections and upper limits are generally consistent with models of OHM emission in which all of the 18 cm OH lines have the same excitation temperature. There is no evidence for a significant population of strong satellite line emitters among OHMs.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
From targeted observations of ground-state OH masers towards 702 Multibeam (MMB) survey 6.7-GHz methanol masers, between Galactic longitudes 186$^{circ}$ through the Galactic centre to 20$^{circ}$, made as part of the `MAGMO project, we present the physical and polarisation properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 previously catalogued 1720-MHz OH maser sources detected towards star formation regions. In addition, we also detected 16 1720-MHz OH masers associated with supernova remnants and two sites of diffuse OH emission. Towards the 33 star formation masers, we identify 44 Zeeman pairs, implying magnetic field strengths ranging from $-$11.4 to $+$13.2 mG, and a median magnetic field strength of $|B_{LOS}|$ $sim$ 6 mG. With limited statistics, we present the in-situ magnetic field orientation of the masers and the Galactic magnetic field distribution revealed by the 1720-MHz transition. We also examine the association statistics of 1720-MHz OH SFR masers with other ground-state OH masers, excited-state OH masers, class I and class II methanol masers and water masers, and compare maser positions with mid-infrared images of the parent star forming regions. Of the 33 1720-MHz star formation masers, ten are offset from their central exciting sources, and appear to be associated with outflow activity.
The LkH$alpha$ 101 cluster takes its name from its more massive member, the LkH$alpha$ 101star, which is an $sim15$ M$_odot$ star whose true nature is still unknown. The distance to the LkH$alpha$ 101 cluster has been controversial for the last few decades, with estimated values ranging from 160 to 800 pc. We have observed members and candidate members of the LkH$alpha$ 101 cluster with signs of magnetic activity, using the Very Long Baseline Array, in order to measure their trigonometric parallax and, thus, obtain a direct measurement of their distances. A young star member, LkH$alpha$ 101 VLA J043001.15+351724.6, was detected at four epochs as a single radio source. The best fit to its displacement on the plane of the sky yields a distance of 535$pm$29 pc. We argue that this is the distance to the LkH$alpha$ 101 cluster.
We present results of a high resolution survey of OH masers in Galactic Star Forming Regions in order to study the maser emission and establish a list of suitable candidates for higher resolution instruments follow up. We used the Very Long Baseline Array (VLBA) to observe the 1665, 1667, 1612 and 1720 MHz OH maser transitions within 41 regions. These are the first high resolution observations for most of the sources. For all the transitions 30 sites of maser emission were detected, 4 of the sources have new detections, and approximately 40% of the sources in the sample exhibit highly compact structure. Finally we consider that the spectrum observed in W75N shows the early stage of a long period OH maser flare in the 1665 MHz line, the first of its kind.