Do you want to publish a course? Click here

On a strong form of propagation of chaos for McKean-Vlasov equations

50   0   0.0 ( 0 )
 Added by Daniel Lacker
 Publication date 2018
  fields
and research's language is English
 Authors Daniel Lacker




Ask ChatGPT about the research

This note shows how to considerably strengthen the usual mode of convergence of an $n$-particle system to its McKean-Vlasov limit, often known as propagation of chaos, when the volatility coefficient is nondegenerate and involves no interaction term. Notably, the empirical measure converges in a much stronger topology than weak convergence, and any fixed $k$ particles converge in total variation to their limit law as $nrightarrowinfty$. This requires minimal continuity for the drift in both the space and measure variables. The proofs are purely probabilistic and rather short, relying on Girsanovs and Sanovs theorems. Along the way, some modest new existence and uniqueness results for McKean-Vlasov equations are derived.



rate research

Read More

In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly converges to the solution of the corresponding averaged equation with convergence order $1/3$ using the approach of time discretization. Furthermore, under stronger regularity conditions on the coefficients, we use the technique of Poisson equation to improve the order to $1/2$, which is the optimal order of strong convergence in general.
We consider conditional McKean-Vlasov stochastic differential equations (SDEs), such as the ones arising in the large-system limit of mean field games and particle systems with mean field interactions when common noise is present. The conditional time-marginals of the solutions to these SDEs satisfy non-linear stochastic partial differential equations (SPDEs) of the second order, whereas the laws of the conditional time-marginals follow Fokker-Planck equations on the space of probability measures. We prove two superposition principles: The first establishes that any solution of the SPDE can be lifted to a solution of the conditional McKean-Vlasov SDE, and the second guarantees that any solution of the Fokker-Planck equation on the space of probability measures can be lifted to a solution of the SPDE. We use these results to obtain a mimicking theorem which shows that the conditional time-marginals of an Ito process can be emulated by those of a solution to a conditional McKean-Vlasov SDE with Markovian coefficients. This yields, in particular, a tool for converting open-loop controls into Markovian ones in the context of controlled McKean-Vlasov dynamics.
76 - Wei Hong , Shihu Li , Wei Liu 2021
This paper is devoted to investigating the Freidlin-Wentzells large deviation principle for a class of McKean-Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence criteria to prove the Laplace principle for McKean-Vlasov type SPDEs, which is equivalent to the large deviation principle. Moreover, we do not assume any compactness condition of embedding in the Gelfand triple to handle both the cases of bounded and unbounded domains in applications. The main results can be applied to various McKean-Vlasov type SPDEs such as distribution dependent stochastic porous media type equations and stochastic p-Laplace type equations.
83 - Meiqi Liu , Huijie Qiao 2020
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likelihood estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
This paper studies the convergence of the tamed Euler-Maruyama (EM) scheme for a class of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the drift coefficients satisfy the super-linear growth condition. We provide the existence and uniqueness of strong solutions to MV-NSDDEs. Then, we use a stochastic particle method, which is based upon the theory of the propagation of chaos between particle system and the original MV-NSDDE, to deal with the approximation of the law. Moreover, we obtain the convergence rate of tamed EM scheme with respect to the corresponding particle system. Combining the result of propagation of chaos and the convergence rate of the numerical solution to the particle system, we get a convergence error between the numerical solution and exact solution of the original MV-NSDDE in the stepsize and number of particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا