No Arabic abstract
We consider conditional McKean-Vlasov stochastic differential equations (SDEs), such as the ones arising in the large-system limit of mean field games and particle systems with mean field interactions when common noise is present. The conditional time-marginals of the solutions to these SDEs satisfy non-linear stochastic partial differential equations (SPDEs) of the second order, whereas the laws of the conditional time-marginals follow Fokker-Planck equations on the space of probability measures. We prove two superposition principles: The first establishes that any solution of the SPDE can be lifted to a solution of the conditional McKean-Vlasov SDE, and the second guarantees that any solution of the Fokker-Planck equation on the space of probability measures can be lifted to a solution of the SPDE. We use these results to obtain a mimicking theorem which shows that the conditional time-marginals of an Ito process can be emulated by those of a solution to a conditional McKean-Vlasov SDE with Markovian coefficients. This yields, in particular, a tool for converting open-loop controls into Markovian ones in the context of controlled McKean-Vlasov dynamics.
In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued inhomogeneous term, we show the existence of weak solutions under mild assumptions. Moreover, by using the Holder regularity estimate obtained recently in cite{GIMV19}, we also show the well-posedness of generalized martingale problems when diffusion coefficients only depend on the position variable (not necessarily continuous). Even in the non density-distribution dependent case, it seems that this is the first result about the well-posedness of SDEs with measurable diffusion coefficients.
We consider $mathbb{R}^d$-valued diffusion processes of type begin{align*} dX_t = b(X_t)dt, +, dB_t. end{align*} Assuming a geometric drift condition, we establish contractions of the transitions kernels in Kantorovich ($L^1$ Wasserstein) distances with explicit constants. Our results are in the spirit of Hairer and Mattinglys extension of Harris Theorem. In particular, they do not rely on a small set condition. Instead we combine Lyapunov functions with reflection coupling and concave distance functions. We retrieve constants that are explicit in parameters which can be computed with little effort from one-sided Lipschitz conditions for the drift coefficient and the growth of a chosen Lyapunov function. Consequences include exponential convergence in weighted total variation norms, gradient bounds, bounds for ergodic averages, and Kantorovich contractions for nonlinear McKean-Vlasov diffusions in the case of sufficiently weak but not necessarily bounded nonlinearities. We also establish quantitative bounds for sub-geometric ergodicity assuming a sub-geometric drift condition.
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up phenomena whereby solutions develop jump-discontinuities. Our main results are twofold and concern the conditional McKean--Vlasov formulation of the model. First and foremost, we show that there are global solutions to this McKean--Vlasov problem, which can be realised as limit points of a motivating particle system with common noise. Furthermore, we derive results on the occurrence of blow-ups, thereby showing how these events can be triggered or prevented by the pathwise realisations of the common noise.
In this paper we consider a class of {it conditional McKean-Vlasov SDEs} (CMVSDE for short). Such an SDE can be considered as an extended version of McKean-Vlasov SDEs with common noises, as well as the general version of the so-called {it conditional mean-field SDEs} (CMFSDE) studied previously by the authors [1, 14], but with some fundamental differences. In particular, due to the lack of compactness of the iterated conditional laws, the existing arguments of Schauders fixed point theorem do not seem to apply in this situation, and the heavy nonlinearity on the conditional laws caused by change of probability measure adds more technical subtleties. Under some structure assumptions on the coefficients of the observation equation, we prove the well-posedness of solution in the weak sense along a more direct approach. Our result is the first that deals with McKean-Vlasov type SDEs involving state-dependent conditional laws.
We study a McKean--Vlasov equation arising from a mean-field model of a particle system with positive feedback. As particles hit a barrier they cause the other particles to jump in the direction of the barrier and this feedback mechanism leads to the possibility that the system can exhibit contagious blow-ups. Using a fixed-point argument we construct a differentiable solution up to a first explosion time. Our main contribution is a proof of uniqueness in the class of c`{a}dl`{a}g functions, which confirms the validity of related propagation-of-chaos results in the literature. We extend the allowed initial conditions to include densities with any power law decay at the boundary, and connect the exponent of decay with the growth exponent of the solution in small time in a precise way. This takes us asymptotically close to the control on initial conditions required for a global solution theory. A novel minimality result and trapping technique are introduced to prove uniqueness.