Do you want to publish a course? Click here

An Additivity theorem for cobordism categories

132   0   0.0 ( 0 )
 Added by Wolfgang Steimle
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Using methods inspired from algebraic $K$-theory, we give a new proof of the Genauer fibration sequence, relating the cobordism categories of closed manifolds with cobordism categories of manifolds with boundaries, and of the Bokstedt-Madsen delooping of the cobordism category. Unlike the existing proofs, this approach generalizes to other cobordism-like categories of interest. Indeed we argue that the Genauer fibration sequence is an analogue, in the setting of cobordism categories, of Waldhausens Additivity theorem in algebraic $K$-theory.



rate research

Read More

We define Grothendieck-Witt spectra in the setting of Poincare $infty$-categories and show that they fit into an extension with a L- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations of Karoubis fundamental and periodicity theorems for rings in which 2 need not be invertible. Our set-up allows for the uniform treatment of such algebraic examples alongside homotopy-theoretic generalisations: For example, the periodicity theorem holds for complex oriented $mathrm{E}_1$-rings, and we show that the Grothendieck-Witt theory of parametrised spectra recovers Weiss and Williams LA-theory. Our Grothendieck-Witt spectra are defined via a version of the hermitian Q-construction, and a novel feature of our approach is to interpret the latter as a cobordism category. This perspective also allows us to give a hermitian version -- along with a concise proof -- of the theorem of Blumberg, Gepner and Tabuada, and provides a cobordism theoretic description of the aforementioned LA-spectra.
137 - Ciprian Manolescu 2018
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.
214 - Jennifer Schultens 2001
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is greater than or equal to the product of k and the bridge number of J; 2) If K is a composite knot (this is the case k = 1), then the bridge number of K is one less than the sum of the bridge numbers of J and L.
147 - Christian Bohr , Ronnie Lee 2001
In this paper we define and investigate Z/2-homology cobordism invariants of Z/2-homology 3-spheres which turn out to be related to classical invariants of knots. As an application we show that many lens spaces have infinite order in the Z/2-homology cobordism group and we prove a lower bound for the slice genus of a knot on which integral surgery yields a given Z/2-homology sphere. We also give some new examples of 3-manifolds which cannot be obtained by integral surgery on a knot.
Lagrangian cobordism induces a preorder on the set of Legendrian links in any contact 3-manifold. We show that any finite collection of null-homologous Legendrian links in a tight contact 3-manifold with a common rotation number has an upper bound with respect to the preorder. In particular, we construct an exact Lagrangian cobordism from each element of the collection to a common Legendrian link. This construction allows us to define a notion of minimal Lagrangian genus between any two null-homologous Legendrian links with a common rotation number.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا