No Arabic abstract
We formulate entropic measurements uncertainty relations (MURs) for a spin-1/2 system. When incompatible observables are approximatively jointly measured, we use relative entropy to quantify the information lost in approximation and we prove positive lower bounds for such a loss: there is an unavoidable information loss. Firstly we allow only for covariant approximate joint measurements and we find state-dependent MURs for two or three orthogonal spin-1/2 components. Secondly we consider any possible approximate joint measurement and we find state-independent MURs for two or three spin-1/2 components. In particular we study how MURs depend on the angle between two spin directions. Finally, we extend our approach to infinitely many incompatible observables, namely to the spin components in all possible directions. In every scenario, we always consider also the characterization of the optimal approximate joint measurements.
We establish uncertainty relations between information loss in general open quantum systems and the amount of non-ergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the non-ergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that non-ergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics, to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the minimal situations that saturate the uncertainty relations.
How violently do two quantum operators disagree? Different fields of physics feature different measures of incompatibility: (i) In quantum information theory, entropic uncertainty relations constrain measurement outcomes. (ii) In condensed matter and high-energy physics, the out-of-time-ordered correlator (OTOC) signals scrambling, the spread of information through many-body entanglement. We unite these measures, proving entropic uncertainty relations for scrambling. The entropies are of distributions over weak and strong measurements possible outcomes. The weak measurements ensure that the OTOC quasiprobability (a nonclassical generalization of a probability, which coarse-grains to the OTOC) governs terms in the uncertainty bound. The quasiprobability causes scrambling to strengthen the bound in numerical simulations of a spin chain. This strengthening shows that entropic uncertainty relations can reflect the type of operator disagreement behind scrambling. Generalizing beyond scrambling, we prove entropic uncertainty relations satisfied by commonly performed weak-measurement experiments. We unveil a physical significance of weak values (conditioned expectation values): as governing terms in entropic uncertainty bounds.
We derive entropic uncertainty relations for successive generalized measurements by using general descriptions of quantum measurement within two {distinctive operational} scenarios. In the first scenario, by merging {two successive measurements} into one we consider successive measurement scheme as a method to perform an overall {composite} measurement. In the second scenario, on the other hand, we consider it as a method to measure a pair of jointly measurable observables by marginalizing over the distribution obtained in this scheme. In the course of this work, we identify that limits on ones ability to measure with low uncertainty via this scheme come from intrinsic unsharpness of observables obtained in each scenario. In particular, for the L{u}ders instrument, disturbance caused by the first measurement to the second one gives rise to the unsharpness at least as much as incompatibility of the observables composing successive measurement.
Heisenbergs uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in various ways. The relative entropy is the natural theoretical quantifier of the information loss when a `true probability distribution is replaced by an approximating one. In this paper, we provide a lower bound for the amount of information that is lost by replacing the distributions of the sharp position and momentum observables, as they could be obtained with two separate experiments, by the marginals of any smeared joint measurement. The bound is obtained by introducing an entropic error function, and optimizing it over a suitable class of covariant approximate joint measurements. We fully exploit two cases of target observables: (1) $n$-dimensional position and momentum vectors; (2) two components of position and momentum along different directions. In (1), we connect the quantum bound to the dimension $n$; in (2), going from parallel to orthogonal directions, we show the transition from highly incompatible observables to compatible ones. For simplicity, we develop the theory only for Gaussian states and measurements.
We formulate a new error-disturbance relation, which is free from explicit dependence upon variances in observables. This error-disturbance relation shows improvement over the one provided by the Branciard inequality and the Ozawa inequality for some initial states and for particular class of joint measurements under consideration. We also prove a modified form of Ozawas error-disturbance relation. The later relation provides a tighter bound compared to the Ozawa and the Branciard inequalities for a small number of states.