Do you want to publish a course? Click here

Stronger Error Disturbance Relations for Incompatible Quantum Measurements

158   0   0.0 ( 0 )
 Added by Namrata Shukla
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We formulate a new error-disturbance relation, which is free from explicit dependence upon variances in observables. This error-disturbance relation shows improvement over the one provided by the Branciard inequality and the Ozawa inequality for some initial states and for particular class of joint measurements under consideration. We also prove a modified form of Ozawas error-disturbance relation. The later relation provides a tighter bound compared to the Ozawa and the Branciard inequalities for a small number of states.



rate research

Read More

In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Sever
232 - Cyril Branciard 2013
The quantification of the measurement uncertainty aspect of Heisenbergs Uncertainty Principle---that is, the study of trade-offs between accuracy and disturbance, or between accuracies in an approximate joint measurement on two incompatible observables---has regained a lot of interest recently. Several approaches have been proposed and debated. In this paper we consider Ozawas definitions for inaccuracies (as root-mean-square errors) in approximate joint measurements, and study how these are constrained in different cases, whether one specifies certain properties of the approximations---namely their standard deviations and/or their bias---or not. Extending our previous work [C. Branciard, Proc. Natl. Acad. Sci. U.S.A. 110, 6742 (2013)], we derive new error-trade-off relations, which we prove to be tight for pure states. We show explicitly how all previously known relations for Ozawas inaccuracies follow from ours. While our relations are in general not tight for mixed states, we show how these can be strengthened and how tight relations can still be obtained in that case.
Heisenbergs uncertainty principle is quantified by error-disturbance tradeoff relations, which have been tested experimentally in various scenarios. Here we shall report improved n
84 - Masanao Ozawa 2021
The uncertainty principle states that a measurement inevitably disturbs the system, while it is often supposed that a quantum system is not disturbed without state change. Korzekwa, Jennings, and Rudolph [Phys. Rev. A 89, 052108 (2014)] pointed out a conflict between those two views, and concluded that state-dependent formulations of error-disturbance relations are untenable. Here, we reconcile the conflict by showing that a quantum system is disturbed without state change, in favor of the recently obtained universally valid state-dependent error-disturbance relations.
We derive a state dependent error-disturbance trade-off based on a statistical distance in the sequential measurements of a pair of noncommutative observables and experimentally verify the relation with a photonic qubit system. We anticipate that this Letter may further stimulate the study on the quantum uncertainty principle and related applications in quantum measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا