Do you want to publish a course? Click here

Pulse delay and group velocity dispersion measurement in V-type electromagnetically induced transparency of hot $^{85}Rb$ atom

96   0   0.0 ( 0 )
 Added by Bankim Chandra Das
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pulse delay with the group velocity dispersion (GVD) characteristics was studied in the V-type electromagnetically induced transparency in the hyperfine levels of $^{85}Rb$ atoms with a closed system configuration. The phase coherency between the pump and the probe laser beams was maintained. We studied the pulse delay and the group velocity dispersion characteristics with the variation of the pump Rabi frequency taking temperature as a parameter. We observed a maximum of $268$ $ns$ pulse delay for $21.24 MHz$ pump Rabi frequency at $55^0C$ temperature of the Rb vapour cell. For a better understanding of the experimental results, we have derived an analytical solution for the delay characteristics considering the thermal averaging. The analytical solution was derived for a three level V-type system. The theoretical plots of the delay and the group velocity dispersion show the same characteristics as we observed in the experiment. This analytical approach can be further generalized for the higher level schemes to calculate different quantities such as susceptibility, group velocity delay or group velocity dispersion characteristics.



rate research

Read More

The electromagnetically induced transparency (EIT) observations in two $Lambda$-systems of $^{87}Rb$ atom, $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=1rangle leftarrow |5^{2}S_{1/2} F=2rangle$ and $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=2rangle leftarrow |5^{2}S_{1/2} F=2rangle$, have been investigated in detail and the results are found consistent with our proposed theoretical models. The second $Lambda$-system provides EIT signal with higher magnitude than the first system, both in absence and in presence of an applied magnetic field. The observed steeper slope of the EIT signal in presence of the magnetic field can enable one to achieve tight frequency locking of lasers using these EIT signals.
82 - L. Ma , G. Raithel 2020
We study $Lambda$-type Electromagnetically Induced Transparency (EIT) on the Rb D2 transition in a buffer-gas-free thermal vapor cell without anti-relaxation coating. Experimental data show distinguished features of velocity-selective optical pumping and one EIT resonance. The Zeeman splitting of the EIT line in magnetic fields up to 12 Gauss is investigated. One Zeeman component is free of the first-order shift and its second-order shift agrees well with theory. The full width at half maximum (FWHM) of this magnetic-field-insensitive EIT resonance is reduced due to Doppler narrowing, scales linearly in Rabi frequency over the range studied, and reaches about 100~kHz at the lowest powers. These observations agree with an analytic model for a Doppler-broadened medium developed in Ref. cite{PhysRevA.66.013805,7653385}. Numerical simulation using the Lindblad equation reveals that the transverse laser intensity distribution and two $Lambda$-EIT systems must be included to fully account for the measured line width and line shape of the signals. Ground-state decoherence, caused by effects that include residual optical frequency fluctuations, atom-wall and trace-gas collisions, is discussed.
We theoretically study electromagnetically induced transparency (EIT) in reflection spectra of V-type system at the gas-solid interface. In addition to a narrow dip arising from the EIT effect, we find the other particular saturation effect induced by pump field, which does not exist in $Lambda$ or $Xi$ -type system reflection spectra. The saturation effect only induces an intensity decrement in the reflection spectra, and there is no influence on the narrow dip arising from the EIT effect. We detailedly calculate and analyze the dependence of V-type system reflection spectra on probe field intensity, pump field intensity, coherent decay rate, and the initial population after the collision between atoms and the interface.
We report electromagnetically induced transparency for the D1 and D2 lines in $^{6}$Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using co-propagating mutually coherent laser beams with a frequency difference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width.
We demonstrate improved sensitivity of Rydberg electrometry based on electromagnetically induced transparency (EIT) with a ground state repumping laser. Though there are many factors that limit the sensitivity of radio frequency field measurements, we show that repumping can enhance the interaction strength while avoiding additional Doppler or power broadening. Through this method, we nearly double the EIT amplitude without an increase in the width of the peak. A similar increase in amplitude without the repumping field is not possible through simple optimization.We also establish that one of the key limits to detection is the photon shot noise of the probe laser. We show an improvement on the sensitivity of the device by a factor of nearly 2 in the presence of the repump field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا