Do you want to publish a course? Click here

CubiCal - Fast radio interferometric calibration suite exploiting complex optimisation

89   0   0.0 ( 0 )
 Added by Jonathan Kenyon
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been shown that radio interferometric gain calibration can be expressed succinctly in the language of complex optimisation. In addition to providing an elegant framework for further development, it exposes properties of the calibration problem which can be exploited to accelerate traditional non-linear least squares solvers such as Gauss-Newton and Levenberg-Marquardt. We extend existing derivations to chains of Jones terms: products of several gains which model different aberrant effects. In doing so, we find that the useful properties found in the single term case still hold. We also develop several specialised solvers which deal with complex gains parameterised by real values. The newly developed solvers have been implemented in a Python package called CubiCal, which uses a combination of Cython, multiprocessing and shared memory to leverage the power of modern hardware. We apply CubiCal to both simulated and real data, and perform both direction-independent and direction-dependent self-calibration. Finally, we present the results of some rudimentary profiling to show that CubiCal is competitive with respect to existing calibration tools such as MeqTrees.



rate research

Read More

New and upcoming radio interferometers will produce unprecedented amounts of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers (ADMM) with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full dataset using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full dataset when a limited number of compute agents are available.
Heterodyne receivers register the sky signal on either a circular polarization basis (where it is split into left-hand and right-hand circular polarization) or a linear polarization basis (where it is split into horizontal and vertical linear polarization). We study the problem of interferometric observations performed with telescopes that observe on different polarization bases, hence producing visibilities that we call mixed basis (i.e., linear in one telescope and circular in the other). We present novel algorithms for the proper calibration and treatment of such interferometric observations and test our algorithms with both simulations and real data. The use of our algorithms will be important for the optimum calibration of forthcoming observations with the Atacama Large mm/submm Array (ALMA) in very-long-baseline interferometry (VLBI) mode. Our algorithms will also allow us to optimally calibrate future VLBI observations at very high data rates (i.e., wide bandwidths), where linear-polarization feeds will be preferable at some stations, to overcome the polarimetric limitations due to the use of quarter-wave plates.
The redshifted 21 cm line of neutral hydrogen is a promising probe of the Epoch of Reionization (EoR). However, its detection requires a thorough understanding and control of the systematic errors. We study two systematic biases observed in the LOFAR EoR residual data after calibration and subtraction of bright discrete foreground sources. The first effect is a suppression in the diffuse foregrounds, which could potentially mean a suppression of the 21 cm signal. The second effect is an excess of noise beyond the thermal noise. The excess noise shows fluctuations on small frequency scales, and hence it can not be easily removed by foreground removal or avoidance methods. Our analysis suggests that sidelobes of residual sources due to the chromatic point spread function and ionospheric scintillation can not be the dominant causes of the excess noise. Rather, both the suppression of diffuse foregrounds and the excess noise can occur due to calibration with an incomplete sky model containing predominantly bright discrete sources. We show that calibrating only on bright sources can cause suppression of other signals and introduce an excess noise in the data. The levels of the suppression and excess noise depend on the relative flux of sources which are not included in the model with respect to the flux of modeled sources. We discuss possible solutions such as using only long baselines to calibrate the interferometric gain solutions as well as simultaneous multi-frequency calibration along with their benefits and shortcomings.
65 - M. Caleb , C. Flynn , M. Bailes 2017
We present the first interferometric detections of Fast Radio Bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-day survey of the Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST ($approx 9$ deg$^{2}$) is well suited to FRB searches. The primary beam is covered by 352 partially overlapping fan-beams, each of which is searched for FRBs in real time with pulse widths in the range 0.655 to 42 ms, and dispersion measures $leq$2000 pc cm$^{-3}$. Detections of FRBs with the UTMOST array places a lower limit on their distances of $approx 10^4$ km (limit of the telescope near-field) supporting the case for an astronomical origin. Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes radio telescope and UTMOST, would allow a few arcsec localisation, thereby providing an excellent means of identifying FRB host galaxies, if present. Up to 100 hours of follow-up for each FRB has been carried out with the UTMOST, with no repeating bursts seen. From the detected position, we present 3$sigma$ error ellipses of 15 arcsec x 8.4 deg on the sky for the point of origin for the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence $cal F_mathrm{lim}$ of 11 Jy ms of $sim 78$ events sky$^{-1}$ d$^{-1}$ at the 95 percent confidence level. The measured rate of FRBs at 843 MHz is of order two times higher than we had expected, scaling from the FRB rate at the Parkes radio telescope, assuming that FRBs have a flat spectral index and a uniform distribution in Euclidean space. We examine how this can be explained by FRBs having a steeper spectral index and/or a flatter log$N$-log$mathcal{F}$ distribution than expected for a Euclidean Universe.
Theia is an astrometric mission proposed to ESA in 2014 for which one of the scientific objectives is detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. This objective requires the capability to measure stellar centroids at the precision of 1e-5 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 3e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The Theia consortium is operating a testbed in vacuum in order to achieve 1e-5 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the Theia spacecraft. The testbed consists of two main sub-systems. The first one produces pseudo stars: a blackbody source is fed into a large core fiber and lights-up a pinhole mask in the object plane, which is imaged by a mirror on the CCD. The second sub-system is the metrology, it projects young fringes on the CCD. The fringes are created by two single mode fibers facing the CCD and fixed on the mirror. In this paper we present the latest experiments conducted and the results obtained after a series of upgrades on the testbed was completed. The calibration system yielded the pixel positions to an accuracy estimated at 4e-4 pixel. After including the pixel position information, an astrometric accuracy of 6e-5 pixel was obtained, for a PSF motion over more than 5 pixels. In the static mode (small jitter motion of less than 1e-3 pixel), a photon noise limited precision of 3e-5 pixel was reached.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا