Do you want to publish a course? Click here

Tunable light flow control in valley photonic crystal waveguide

83   0   0.0 ( 0 )
 Added by Jianwen Dong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exploration of binary valley degree of freedom in topological photonic systems has inspired many intriguing optical phenomena such as photonic Hall effect, robust delay lines, and perfect out-coupling refraction. In this work, we experimentally demonstrate the tunability of light flow in a valley photonic crystal waveguide. By continuously controlling the phase difference of microwave monopolar antenna array, the flow of light can split into different directions according to the charily of phase vortex, and the splitting ratio varies smoothly from 0.9 to 0.1. Topological valley transport of edge states is also observed at photonic domain wall. Tunable edge state dispersion, i.e., from gapless valley dependent modes to gapped flat bands, is found at the photonic boundary between a valley photonic crystal waveguide and a perfect electric conductor, leading to the tunable frequency bandwidth of high transmission. Our work paves a way to the controllability and dynamic modulations of light flow in topological photonic systems.



rate research

Read More

We report a valley photonic crystal (VPhC) waveguide in a GaAs slab with InAs quantum dots (QDs) as an internal light source exploited for experimental characterization of the waveguide. A topological interface state formed at the interface between two topologically-distinct VPhCs is used as the waveguide mode. We demonstrate robust propagation for near-infrared light emitted from the QDs even under the presence of sharp bends as a consequence of the topological protection of the guided mode. Our work will be of importance for developing robust photonic integrated circuits with small footprints, as well as for exploring active semiconductor topological photonics.
The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths range corresponding to the slow light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow light transmission.
We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.
Valley photonic crystal is one type of photonic topological insulator, whose realization only needs P-symmetry breaking. The domain wall between two valley-contrasting photonic crystals support robust edge states which can wrap around sharp corners without backscattering. Using the robust edge states, one can achieve the pulse transmission. Here, using time-domain measurement in the microwave regime, we show distortionless pulse transmission in a sharply bended waveguide. An Omega-shaped waveguide with four 120-degree bends is constructed with the domain wall between two valley photonic crystal slabs. Experimental results show the progress of Gaussian pulse transmission without distortion, and the full width at half maximum of the output signal was changed slightly in the Omega-shaped waveguide. By measuring steady state electric field distribution, we also confirmed the confined edge states without out-of-plane radiation which benefits from the dispersion below the light line. Our work provides a way for high-fidelity optical pulse signal transmission and develop high-performance optical elements such as photonic circuits or optical delay lines.
91 - Xiang Xi , Kang-Ping Ye , 2020
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can have large valley Chern number of two or three. The valley phase transitions between the different valley Chern numbers (from one to three) are realized by changing the configuration of the unit cell. We demonstrate that these new topological phases can guide the wave propagation robustly along the domain wall of sharp bent. Our results are promising for the exploration of new topological phenomena in photonic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا