Do you want to publish a course? Click here

Robustness Testing of Intermediate Verifiers

143   0   0.0 ( 0 )
 Added by Yu-Ting Chen
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Program verifiers are not exempt from the bugs that affect nearly every piece of software. In addition, they often exhibit brittle behavior: their performance changes considerably with details of how the input program is expressed-details that should be irrelevant, such as the order of independent declarations. Such a lack of robustness frustrates users who have to spend considerable time figuring out a tools idiosyncrasies before they can use it effectively. This paper introduces a technique to detect lack of robustness of program verifiers; the technique is lightweight and fully automated, as it is based on testing methods (such as mutation testing and metamorphic testing). The key idea is to generate many simple variants of a program that initially passes verification. All variants are, by construction, equivalent to the original program; thus, any variant that fails verification indicates lack of robustness in the verifier. We implemented our technique in a tool called mugie, which operates on programs written in the popular Boogie language for verification-used as intermediate representation in numerous program verifiers. Experiments targeting 135 Boogie programs indicate that brittle behavior occurs fairly frequently (16 programs) and is not hard to trigger. Based on these results, the paper discusses the main sources of brittle behavior and suggests means of improving robustness.



rate research

Read More

Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the commonly used neuron coverage metrics by existing DL testing approaches are not correlated to model robustness. It is also not an effective measurement on the confidence of the model robustness after testing. In this work, we address this gap by proposing a novel testing framework called Robustness-Oriented Testing (RobOT). A key part of RobOT is a quantitative measurement on 1) the value of each test case in improving model robustness (often via retraining), and 2) the convergence quality of the model robustness improvement. RobOT utilizes the proposed metric to automatically generate test cases valuable for improving model robustness. The proposed metric is also a strong indicator on how well robustness improvement has converged through testing. Experiments on multiple benchmark datasets confirm the effectiveness and efficiency of RobOT in improving DL model robustness, with 67.02% increase on the adversarial robustness that is 50.65% higher than the state-of-the-art work DeepGini.
80 - Yixiao Yang 2020
In the field of software engineering, applying language models to the token sequence of source code is the state-of-art approach to build a code recommendation system. The syntax tree of source code has hierarchical structures. Ignoring the characteristics of tree structures decreases the model performance. Current LSTM model handles sequential data. The performance of LSTM model will decrease sharply if the noise unseen data is distributed everywhere in the test suite. As code has free naming conventions, it is common for a model trained on one project to encounter many unknown words on another project. If we set many unseen words as UNK just like the solution in natural language processing, the number of UNK will be much greater than the sum of the most frequently appeared words. In an extreme case, just predicting UNK at everywhere may achieve very high prediction accuracy. Thus, such solution cannot reflect the true performance of a model when encountering noise unseen data. In this paper, we only mark a small number of rare words as UNK and show the prediction performance of models under in-project and cross-project evaluation. We propose a novel Hierarchical Language Model (HLM) to improve the robustness of LSTM model to gain the capacity about dealing with the inconsistency of data distribution between training and testing. The newly proposed HLM takes the hierarchical structure of code tree into consideration to predict code. HLM uses BiLSTM to generate embedding for sub-trees according to hierarchies and collects the embedding of sub-trees in context to predict next code. The experiments on inner-project and cross-project data sets indicate that the newly proposed Hierarchical Language Model (HLM) performs better than the state-of-art LSTM model in dealing with the data inconsistency between training and testing and achieves averagely 11.2% improvement in prediction accuracy.
Deep neural networks (DNNs) have shown remarkable performance in a variety of domains such as computer vision, speech recognition, or natural language processing. Recently they also have been applied to various software engineering tasks, typically involving processing source code. DNNs are well-known to be vulnerable to adversarial examples, i.e., fabricated inputs that could lead to various misbehaviors of the DNN model while being perceived as benign by humans. In this paper, we focus on the code comment generation task in software engineering and study the robustness issue of the DNNs when they are applied to this task. We propose ACCENT, an identifier substitution approach to craft adversarial code snippets, which are syntactically correct and functionality-preserving with respect to the original code snippet, but may mislead the DNNs to produce completely irrelevant code comments. In order to improve the robustness, ACCENT also incorporates a novel training method, which can be applied to existing code comment generation models. We conduct comprehensive experiments to evaluate our approach by attacking the mainstream encoder-decoder architectures on two large-scale publicly available datasets. The results show that ACCENT efficiently produces stable attacks with functionality-preserving adversarial examples, and the generated examples have better transferability compared with baselines. We also confirm, via experiments, the effectiveness in improving model robustness with our training method.
We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested in a closed-loop mode in interaction with the application environment. Typically, DNNs are subjected to both types of testing during their development life cycle where offline testing is applied immediately after DNN training and online testing follows after offline testing and once a DNN is deployed within a specific application environment. In this paper, we study the relationship between offline and online testing. Our goal is to determine how offline testing and online testing differ or complement one another and if offline testing results can be used to help reduce the cost of online testing? Though these questions are generally relevant to all autonomous systems, we study them in the context of automated driving systems where, as study subjects, we use DNNs automating end-to-end controls of steering functions of self-driving vehicles. Our results show that offline testing is less effective than online testing as many safety violations identified by online testing could not be identified by offline testing, while large prediction errors generated by offline testing always led to severe safety violations detectable by online testing. Further, we cannot exploit offline testing results to reduce the cost of online testing in practice since we are not able to identify specific situations where offline testing could be as accurate as online testing in identifying safety requirement violations.
Automated machine learning (AutoML) systems aim at finding the best machine learning (ML) pipeline that automatically matches the task and data at hand. We investigate the robustness of machine learning pipelines generated with three AutoML systems, TPOT, H2O, and AutoKeras. In particular, we study the influence of dirty data on accuracy, and consider how using dirty training data may help create more robust solutions. Furthermore, we also analyze how the structure of the generated pipelines differs in different cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا