Do you want to publish a course? Click here

Evaporating the Milky Way halo and its satellites with inelastic self-interacting dark matter

87   0   0.0 ( 0 )
 Added by Mark Vogelsberger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-interacting dark matter provides a promising alternative for the cold dark matter paradigm to solve potential small-scale galaxy formation problems. Nearly all self-interacting dark matter simulations so far have considered only elastic collisions. Here we present simulations of a galactic halo within a generic inelastic model using a novel numerical implementation in the Arepo code to study arbitrary multi-state inelastic dark matter scenarios. For this model we find that inelastic self-interactions can: (i) create larger subhalo density cores compared to elastic models for the same cross section normalisation; (ii) lower the abundance of satellites without the need for a power spectrum cutoff; (iii) reduce the total halo mass by about 10%; (iv) inject the energy equivalent of O(100) million Type II supernovae in galactic haloes through level de-excitation; (v) avoid the gravothermal catastrophe due to removal of particles from halo centers. We conclude that a ~5 times larger elastic cross section is required to achieve the same central density reduction as the inelastic model. This implies that well-established constraints on self-interacting cross sections have to be revised if inelastic collisions are the dominant mode. In this case significantly smaller cross sections can achieve the same core density reduction thereby increasing the parameter space of allowed models considerably.



rate research

Read More

Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section $sigma/m$. We compare the shape of the main dark matter (DM) halo at redshift $z=0$ predicted by SIDM simulations (at $sigma/m=0.1$, $1$, and $10$ cm$^2$ g$^{-1}$) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on $sigma/m$. This transition could potentially be used to set limits on the SIDM cross-section in the MW.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have similar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., this issue). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 micron) simultaneously. A high-resolution (R~19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements.
We propose a novel method to constrain the Milky Way (MW) mass $M_{rm vir}$ with its corona temperature observations. For a given corona density profile, one can derive its temperature distribution assuming a generalized equilibrium model with non-thermal pressure support. While the derived temperature profile decreases substantially with radius, the X-ray-emission-weighted average temperature, which depends most sensitively on $M_{rm vir}$, is quite uniform toward different sight lines, consistent with X-ray observations. For an Navarro-Frenk-White (NFW) total matter distribution, the corona density profile should be cored, and we constrain $M_{rm vir}=(1.19$ - $2.95) times 10^{12} M_{rm sun}$. For a total matter distribution contributed by an NFW dark matter profile and central baryons, the corona density profile should be cuspy and $M_{rm vir,dm}=(1.34$ - $5.44) times 10^{12} M_{rm sun}$. Non-thermal pressure support leads to even higher values of $M_{rm vir}$, while a lower MW mass may be possible if the corona is accelerating outward. This method is independent of the total corona mass, its metallicity, and temperature at very large radii.
208 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا