Do you want to publish a course? Click here

Measuring quark polarizations at ATLAS and CMS

60   0   0.0 ( 0 )
 Added by Yevgeny Kats
 Publication date 2018
  fields
and research's language is English
 Authors Yevgeny Kats




Ask ChatGPT about the research

Being able to measure the polarization of quarks produced in various processes at the LHC would be of fundamental significance. Measuring the polarizations of quarks produced in new physics processes, once discovered, can provide crucial information about the new physics Lagrangian. In a series of recent papers, we have investigated how quark polarization measurements can be done in practice. The polarizations of heavy quarks (b and c) are expected to be largely preserved in the lightest baryons they hadronize into, the Lambda_b and Lambda_c, respectively. Furthermore, it is known experimentally that s-quark polarization is preserved as well, in Lambda baryons. We study how ATLAS and CMS can measure polarizations of b, c and s quarks using certain decays of these baryons. We propose to use the Standard Model ttbar and Wc samples to calibrate these measurements. We estimate that the Run 2 dataset will suffice for measuring the quark polarizations in these Standard Model samples with precisions of order 10%. We also propose various additional measurements for the near and far future that would help characterize the polarization transfer from the quarks to the baryons.



rate research

Read More

124 - Yevgeny Kats 2015
Polarization of strange quarks is preserved to a high degree when they hadronize into Lambda baryons, as observed in Z decays at LEP. This opens up the possibility for ATLAS and CMS to use strange-quark polarization measurements as a characterization tool for new physics scenarios that produce such quarks. Measurements in ttbar samples would be useful for obtaining additional information about the polarization transfer from the strange quark to the Lambda baryon. Already with 100/fb in Run 2, ttbar samples in ATLAS and CMS become competitive in sensitivity with the Z samples of the LEP experiments. Moreover, while the LEP measurements were done inclusively over all quark flavors, which makes their interpretation dependent on various modeling assumptions, ttbar events at the LHC offer multiple handles for disentangling the different contributions experimentally. We also discuss the possibility of measuring polarizations of up and down quarks.
192 - Luca Lista 2014
A review of the main recent results on top quark production from the ATLAS and CMS experiments is presented. Results on both electroweak single top quark production and strong top pair production are presented.
The CMS and the ATLAS Collaborations have recently reported on the search for supersymmetry with 35 pb$^{-1}$ of data and have put independent limits on the parameter space of the supergravity unified model with universal boundary conditions at the GUT scale for soft breaking, i.e., the mSUGRA model. We extend this study by examining other regions of the mSUGRA parameter space in $A_0$ and $tanbeta$. Further, we contrast the reach of CMS and ATLAS with 35 pb$^{-1}$ of data with the indirect constraints, i.e., the constraints from the Higgs boson mass limits, from flavor physics and from the dark matter limits from WMAP. Specifically it is found that a significant part of the parameter space excluded by CMS and ATLAS is essentially already excluded by the indirect constraints and the fertile region of parameter space has yet to be explored. We also emphasize that gluino masses as low as 400 GeV but for squark masses much larger than the gluino mass remain unconstrained and further that much of the hyperbolic branch of radiative electroweak symmetry breaking, with low values of the Higgs mixing parameter $mu$, is essentially untouched by the recent LHC analysis.
Constraints on dark matter from the first CMS and ATLAS SUSY searches are investigated. It is shown that within the minimal supergravity model, the early search for supersymmetry at the LHC has depleted a large portion of the signature space in dark matter direct detection experiments. In particular, the prospects for detecting signals of dark matter in the XENON and CDMS experiments are significantly affected in the low neutralino mass region. Here the relic density of dark matter typically arises from slepton coannihilations in the early universe. In contrast, it is found that the CMS and ATLAS analyses leave untouched the Higgs pole and the Hyperbolic Branch/Focus Point regions, which are now being probed by the most recent XENON results. Analysis is also done for supergravity models with non-universal soft breaking where one finds that a part of the dark matter signature space depleted by the CMS and ATLAS cuts in the minimal SUGRA case is repopulated. Thus, observation of dark matter in the LHC depleted region of minimal supergravity may indicate non-universalities in soft breaking.
114 - Andre Sopczak 2020
A concise review of precision measurements in the Higgs sector of the Standard Model (SM) of particle physics is given using ATLAS and CMS data. The results are based on LHC Run-2 data, taken between 2015 and 2018. Impressive progress has been made since the discovery of the Higgs boson in 2012 for measuring all major production and decay modes. Good agreement with the SM predictions was observed in all measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا