Do you want to publish a course? Click here

The stability of exfoliated FeSe nanosheets during in-air device fabrication process

92   0   0.0 ( 0 )
 Added by Rui Yang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the stability and superconductivity of FeSe nanosheets during an in-air device fabrication process. Methods were developed to improve the exfoliation yield and to maintain the superconductivity of FeSe. Raman spectroscopy, atomic force microscopy, optical microscopy and time-of-flight-secondary-ion-mass-spectroscopy measurements show that FeSe nanosheets decayed in air. Precipitation of Se particles and iron oxidation likely occurred during the decay process. Transport measurements revealed that the superconductivity of FeSe disappeared during a conventional electron beam lithography process. Shadow mask evaporation and transfer onto pre-defined electrodes methods were shown to be effective in maintaining the superconductivity after the in-air device fabrication process. These methods developed provide a way of making high quality FeSe nano-devices.



rate research

Read More

73 - Jyoti Shakya , Gayathri H N , 2021
We report piezoelectric response in liquid phase exfoliated MoS2 nanosheets with desired structure and morphology. The piezoelectric effect in liquid phase exfoliated few layers of MoS2 flakes is interesting as it may allow the scalable fabrication of electronic devices such as self-powered electronics, piezoelectric transformers, antennas and more. The piezo force microscopy (PFM) measurements were used to quantify the amplitude and phase loop, which shows strong piezoelectric coefficient. Herein, the piezoelectric response in few layers of MoS2 is attributed to the defects formed in it during the synthesis procedure. The presence of defects is confirmed by XPS analysis
Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanosheet application potential. To understand the factors controlling the exfoliation process, we have liquid-exfoliated 11 different layered materials, size-selecting each into fractions before using AFM to measure the nanosheet length, width, and thickness distributions for each fraction. The resultant data show a clear power-law scaling of nanosheet area with thickness for each material. We have developed a simple nonequilibrium thermodynamics-based model predicting that the power-law prefactor is proportional to both the ratios of in-plane-tearing/out-of-plane-peeling energies and in-plane/out-of-plane moduli. By comparing the experimental data with the modulus ratio calculated from first-principles, we find close agreement between experiment and theory. This supports our hypothesis that energy equipartition holds between nanosheet tearing and peeling during sonication-assisted exfoliation.
307 - Matteo Calandra 2013
Chemically and mechanically exfoliated MoS$_2$ single-layer samples have substantially different properties. While mechanically exfoliated single-layers are mono-phase (1H polytype with Mo in trigonal prismatic coordination), the chemically exfoliated samples show coexistence of three different phases, 1H, 1T (Mo in octahedral coordination) and 1T$^{}$ (a distorted $2times 1$ 1T-superstructure). By using first-principles calculations, we investigate the energetics and the dynamical stability of the three phases. We show that the 1H phase is the most stable one, while the metallic 1T phase, strongly unstable, undergoes a phase transition towards a metastable and insulating 1T$^{}$ structure composed of separated zig-zag chains. We calculate electronic structure, phonon dispersion, Raman frequencies and intensities for the 1T$^{}$ structure. We provide a microscopical description of the J$_1$, J$_2$ and J$_3$ Raman features first detected more then $20$ years ago, but unexplained up to now. Finally, we show that H adsorbates, that are naturally present at the end of the chemical exfoliation process, stabilize the 1T$^{prime}$ over the 1H one.
The ability to efficiently evolve hydrogen via electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution reaction (HER) can be easily achieved from water if a voltage above the thermodynamic potential of the HER is applied. Large overpotentials are energetically inefficient but can be lowered with expensive platinum based catalysts. Replacement of Pt with inexpensive, earth abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. Towards this end, promising HER characteristics have been reported using 2H (trigonal prismatic) XS2 (where X = Mo or W) nanoparticles with a high concentration of metallic edges as electrocatalysts. The key challenges for HER with XS2 are increasing the number and catalytic activity of active sites. Here we report atomically thin nanosheets of chemically exfoliated WS2 as efficient catalysts for hydrogen evolution with very low overpotentials. Atomic-resolution transmission electron microscopy and spectroscopy analyses indicate that enhanced electrocatalytic activity of WS2 is associated with high concentration of strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Density functional theory calculations reveal that the presence of strain in the 1T phase leads to an enhancement of the density of states at the Fermi level and increases the catalytic activity of the WS2 nanosheet. Our results suggest that chemically exfoliated WS2 nanosheets could be interesting catalysts for hydrogen evolution.
To determine the friction coefficient of graphene, micro-scale scratch tests are conducted on exfoliated and epitaxial graphene at ambient conditions. The experimental results show that the monolayer, bilayer, and trilayer graphene all yield friction coefficients of approximately 0.03. The friction coefficient of pristine graphene is less than that of disordered graphene, which is treated by oxygen plasma. Ramping force scratch tests are performed on graphene with various numbers of layers to determine the normal load required for the probe to penetrate graphene. A very low friction coefficient and also its high pressure resistance make graphene a promising material for antiwear coatings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا