Do you want to publish a course? Click here

Limits on the flux of tau neutrinos from 1 PeV to 3 EeV with the MAGIC telescopes

81   0   0.0 ( 0 )
 Added by Dariusz Gora
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for tau neutrino induced showers with the MAGIC telescopes is presented. The MAGIC telescopes located at an altitude of 2200 m a.s.l. in the Canary Island of La Palma, can point towards the horizon or a few degrees below across an azimuthal range of about 80 degrees. This provides a possibility to search for air showers induced by tau leptons arising from interactions of tau neutrinos in the Earth crust or the surrounding ocean. In this paper we show how such air showers can be discriminated from the background of very inclined hadronic showers by using Monte Carlo simulations. Taking into account the orography of the site, the point source acceptance and the event rates expected have been calculated for a sample of generic neutrino fluxes from photo-hadronic interactions in AGNs. The analysis of about 30 hours of data taken towards the sealeads to a 90% C.L. point source limit for tau neutrinos in the energy range from $1.0 times 10^{15}$ eV to $3.0 times 10^{18}$ eV of about $E_{ u_{tau}}^{2}times phi (E_{ u_{tau}}) < 2.0 times 10^{-4}$ GeV cm$^{-2}$ s$^{-1}$ for an assumed power-law neutrino spectrum with spectral index $gamma$=-2. However, with 300 hours and in case of an optimistic neutrino flare model, limits of the level down to $E_{ u_{tau}}^{2}times phi (E_{ u_{tau}}) < 8.4 times 10^{-6}$ GeV cm$^{-2}$ s$^{-1}$ can be expected.



rate research

Read More

154 - O. Blanch Bigas 2007
With the Pierre Auger Observatory we have the capability of detecting ultra-high energy neutrinos by searching for very inclined showers with a significant electromagnetic component. In this work we discuss the discrimination power of the instrument for earth skimming tau neutrinos with ultra-high energies. Based on the data collected since January 2004 an upper limit to the diffuse flux of neutrinos atEeV energies is presented and systematic uncertainties are discussed.
The SPHERE-2 balloon-borne detector designed for extensive air shower (EAS) observations using EAS optical Vavilov-Cherenkov radiation (``Cherenkov light), reflected from the snow-covered surface of Lake Baikal is described. We briefly discuss the concept behind the reflected Cherenkov light method, characterize the conditions at the experimental site and overview the construction of the tethered balloon used to lift the SPHERE-2 telescope above the surface. This paper is mainly dedicated to a detailed technical description of the detector, including its optical system, sensitive elements, electronics, and data acquisition system (DAQ). The results of some laboratory and field tests of the optical system are presented.
259 - Y. Aita 2011
We report the first observational search for tau neutrinos from gamma ray bursts (GRBs) using one of the Ashra light collectors. The earth-skimming tau-neutrino technique of imaging Cherenkov tau showers was applied as a detection method. We set stringent upper limits on the tau-neutrino fluence in PeV-EeV region for 3780 s (between 2.83 and 1.78 hours before) and another 3780 s (between 21.2 and 22.2 hours after) surrounding GRB081203A triggered by the Swift satellite. This first search for PeV-EeV tau neutrino complements other experiments in energy range and methodology, and suggests the prologue of multi-particle astronomy with a precise determination of time and location.
The MAGIC gamma-ray observatory has recently been upgraded by a second Cherenkov telescope at a distance of 85 m from the first one. Simultaneous observation of air showers with the two MAGIC telescopes (stereoscopic mode) will improve the reconstruction of the shower axis and solve the ambiguity in the impact point occurring in single-telescope mode. Also, the stereo observation will result in a better angular resolution, energy estimation and cosmic-ray background rejection. It is expected that the sensitivity of MAGIC improves significantly over the full energy range (60 GeV - 20 TeV). Here, we present the performance estimated from Monte Carlo simulations.
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies ($Egtrsim10^{18}$ eV). For an efficient cosmic-ray injection from blazars, $pgamma$ collisions with the extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectrum peaks near PeV and EeV energies, respectively. We analyze the contribution of these neutrinos to the diffuse background measured by the IceCube neutrino observatory. The fraction of neutrino luminosity originating from individual redshift ranges is calculated using the distribution of BL Lacs and FSRQs provided in the textit{Fermi}-LAT 4LAC catalog. Furthermore, we use a luminosity dependent density evolution to find the neutrino flux from unresolved blazars. The results obtained in our model indicate that as much as $approx10%$ of the flux upper bound at a few PeV energies can arise from cosmic-ray interactions on EBL. The same interactions will also produce secondary electrons and photons, initiating electromagnetic cascades. The resultant photon spectrum is limited by the isotropic diffuse $gamma$-ray flux measured between 100 MeV and 820 GeV. The latter, together with the observed cosmic-ray flux at $E>10^{16.5}$ eV, can constrain the baryonic loading factor depending on the maximum cosmic-ray acceleration energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا