Do you want to publish a course? Click here

Ultrafast Photodissociation Dynamics and Nonadiabatic Coupling Between Excited Electronic States of Methanol Probed by Time-Resolved Photoelectron Spectroscopy

70   0   0.0 ( 0 )
 Added by Daniel Slaughter
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation pump pulse is followed by a delayed 260~nm photoionization probe pulse, to produce photoelectrons that are analyzed by velocity map imaging. The yield of mass-resolved ions, measured with similar experimental conditions, are found to exhibit the same time-dependence as specific photoelectron spectral features. Energy-resolved signal onset and decay times are extracted from the measured photoelectron spectra to achieve high temporal resolution, beyond the 20~fs pump and probe pulse durations. When combined with {it ab initio} calculations of selected cuts through the excited state potential energy surfaces, this information allows the dynamics of the transient excited molecule, which exhibits multiple nuclear and electronic degrees of freedom, to be tracked on its intrinsic few-femtosecond timescale. Within 15~fs of photoexcitation, we observe nuclear motion on the initially bound photoexcited 2$^{1}$A$$ (S$_2$) electronic state, through a conical intersection with the 1$^{1}$A$$ (S$_3$) state, which reveals paths to photodissociation following C--O stretch and C--O--H angle opening.



rate research

Read More

We investigate ultrafast dynamics of the lowest singlet excited electronic state in liquid nitrobenzene using Ultrafast Transient Polarization Spectroscopy (UTPS), extending the well-known technique of Optical-Kerr Effect (OKE) spectroscopy to excited electronic states. The third-order non-linear response of the excited molecular ensemble is highly sensitive to details of excited state character and geometries and is measured using two femtosecond pulses following a third femtosecond pulse that populates the S1 excited state. By measuring this response as a function of time delays between the three pulses involved, we extract the dephasing time of the wave-packet on the excited state. The dephasing time measured as a function of time-delay after pump excitation shows oscillations indicating oscillatory wave-packet dynamics on the excited state. From the experimental measurements and supporting theoretical calculations, we deduce that the wave-packet completely leaves the S1 state surface after three traversals of the inter-system crossing between the singlet S1 and triplet T2 states.
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the third-order nonlinear optical susceptibility. A non-colinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited electronic states using the optical Kerr effect by time-resolved polarization spectroscopy. Optical heterodyne and optical homodyne detection are demonstrated to measure the third-order nonlinear optical response for the S1 excited state of liquid nitrobenzene, which is populated by 2-photon absorption of a 780 nm 35 fs excitation pulse.
In this article we review our angle- and time-resolved photoemission studies (ARPES and trARPES) on various ferropnictides.
Recently developed circularly polarized X-ray light sources can probe ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism (TRCD) signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N and O) provide different local windows onto the parity breaking geometry change thus revealing enantiomer asymmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا