Do you want to publish a course? Click here

Time-resolved photoelectron spectroscopy of non-adiabatic dynamics in polyatomic molecules

142   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.



rate research

Read More

The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range $19...40$ eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the $C_{2}H_{2}^{+}$ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the $4pi$-collection geometry of velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
Unravelling the main initial dynamics responsible for chiral recognition is a key stepin the understanding of many biological processes. However this challenging task requires a sensitive enantiospecic probe to investigate molecular dynamics on their natural femtosecond timescale. Here we show that, in the gas phase, the ultrafast relaxationdynamics of photoexcited chiral molecules can be tracked by recording Time-ResolvedPhotoElectron Circular Dichroism (TR-PECD) resulting from the photoionisation bya circularly polarized probe pulse. A large forward/backward asymmetry along theprobe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump-probe delay reveals ultrafast dynamics that are inaccessible in theangle-integrated photoelectron spectrum nor via the usual electron emission anisotropyparameter ($beta$). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamicsin chiral systems.
High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.
Coherence among rotational ion channels during photoionization is exploited to control the anisotropy of the resulting photoelectron angular distributions at specific photoelectron energies. The strategy refers to a robust and single parameter control using two ultra-short light pulses delayed in time. The first pulse prepares a superposition of a few ion rotational states, whereas the second pulse serves as a probe that gives access to a control of the molecular asymmetry parameter $beta$ for individual rotational channels. This is achieved by tuning the time delay between the pulses leading to channel interferences that can be turned from constructive to destructive. The illustrative example is the ionization of the $E(1Sigma_{g}^{+})$ state of Li$_{2}$. Quantum wave packet evolutions are conducted including both electronic and nuclear degrees of freedom to reach angle-resolved photoelectron spectra. A simple interference model based on coherent phase accumulation during the field-free dynamics between the two pulses is precisely exploited to control the photoelectron angular distributions from almost isotropic, to marked anisotropic.
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF reconstruction, this protocol makes use of time-resolved LF measurements, in which a rotational wavepacket is prepared and probed via photoionization, followed by a numerical reconstruction routine; however, in contrast to other methodologies, the protocol developed herein does not require determination of photoionization matrix elements, and consequently takes a relatively simple numerical form (matrix transform making use of the Moore-Penrose inverse). Significantly, the simplicity allows application of the method to the successful reconstruction of MFPADs for polyatomic molecules. The scheme is demonstrated numerically for two realistic cases, $N_2$ and $C_2H_4$. The new technique is expected to be generally applicable for a range of MF reconstruction problems involving photoionization of polyatomic molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا