No Arabic abstract
NASAs New Horizons spacecraft will conduct a close flyby of the cold classical Kuiper Belt Object (KBO) designated (486958) 2014 MU69 on January 1, 2019. At a heliocentric distance of 44 AU, MU69 will be the most distant object ever visited by a spacecraft. To enable this flyby, we have developed an extremely high precision orbit fitting and uncertainty processing pipeline, making maximal use of the Hubble Space Telescopes Wide Field Camera 3 (WFC3) and pre-relea
We report HST lightcurve observations of the New Horizons (NH) spacecraft encounter KBO (486958) 2014 MU69 acquired near opposition in July 2017. In order to plan the optimum flyby sequence the NH mission planners needed to learn as much as possible about the target in advance of the encounter. Specifically, from lightcurve data, encounter timing could be adjusted to accommodate a highly elongated, binary, or rapidly rotating target. HST astrometric (Porter et al. 2018) and stellar occultation (Buie et al. 2018) observations constrained MU69s orbit and diameter (21-41 km for an albedo of 0.15-0.04), respectively. Photometry from the astrometric dataset suggested a variability of $ge$0.3 mags, but they did not determine the period or provide shape information. We strategically spaced 24 HST orbits over 9 days to investigate rotation periods from approximately 2-100 hours and to better constrain the lightcurve amplitude. Until NH detected MU69 in its optical navigation images beginning in August 2018, this HST campaign provided the most accurate photometry to date. The mean variation in our data is 0.15 mags which suggests that MU69 is either nearly spherical (a:b axis ratio of 1:1.15), or its pole vector is pointed near the line of sight to Earth; this interpretation does not preclude a near-contact binary or bi-lobed object. However, image stacks do conclude that MU69 does not have a binary companion $ge$2000 km with a sensitivity to 29th magnitude. We report with confidence that MU69 is not both rapidly rotating and highly elongated. We note that our results are consistent with the fly-by imagery and orientation of MU69 (Stern et al. 2019). The combined dataset also suggests that within the KBO lightcurve literature there are likely other objects which share a geometric configuration like MU69 resulting in an underestimate of the contact binary fraction for the CC Kuiper Belt.
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 $pm$ 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
The centerpiece objective of the NASA New Horizons first Kuiper Extended Mission (KEM-1) was the close flyby of the Kuiper Belt Object KBO) 2014 MU69, nicknamed Ultima Thule. On 1 Jan 2019 this flyby culminated, making the first close observations of a small KBO. Initial post flyby trajectory reconstruction indicated the spacecraft approached to within ~3500 km of MU69 at 5:33:19 UT. Here we summarize the earliest results obtained from that successful flyby. At the time of this submission, only 4 days of data down-link from the flyby were available; well over an order of magnitude more data will be down-linked by the time of this Lunar and Planetary Science Conference presentation in 2019 March. Therefore many additional results not available at the time of this abstract submission will be presented in this review talk.
The Kuiper Belt is a distant region of the Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a Cold Classical Kuiper Belt Object, a class of objects that have never been heated by the Sun and are therefore well preserved since their formation. Here we describe initial results from these encounter observations. MU69 is a bi-lobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color and compositional heterogeneity. No evidence for satellites, ring or dust structures, gas coma, or solar wind interactions was detected. By origin MU69 appears consistent with pebble cloud collapse followed by a low velocity merger of its two lobes.
The New Horizons encounter with the cold classical Kuiper Belt object (KBO) 2014 MU69 (informally named Ultima Thule, hereafter Ultima) on 1 January 2019 will be the first time a spacecraft has ever closely observed one of the free-orbiting small denizens of the Kuiper Belt. Related to but not thought to have formed in the same region of the Solar System as the comets that been explored so far, it will also be the largest, most distant, and most primitive body yet visited by spacecraft. In this letter we begin with a brief overview of cold classical KBOs, of which Ultima is a prime example. We give a short preview of our encounter plans. We note what is currently known about Ultima from earth-based observations. We then review our expectations and capabilities to evaluate Ultimas composition, surface geology, structure, near space environment, small moons, rings, and the search for activity.