Do you want to publish a course? Click here

Induced unconventional superconductivity on the surface states of Bi$_2$Te$_3$ topological insulator

176   0   0.0 ( 0 )
 Added by Riccardo Arpaia
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral $p_x$ + i$p_y$ wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi$_2$Te$_3$ topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral $p_x$ + i$p_y$ component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and $pi$ coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi$_2$Te$_3$ flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.



rate research

Read More

Quasi-1D nanowires of topological insulators are emerging candidate structures in superconductor hybrid architectures for the realization of Majorana fermion based quantum computation schemes. It is however technically difficult to both fabricate as well as identify the 1D limit of topological insulator nanowires. Here, we investigated selectively-grown Bi$_2$Te$_3$ topological insulator nanoribbons and nano Hall bars at cryogenic temperatures for their topological properties. The Hall bars are defined in deep-etched Si$_3$N$_4$/SiO$_2$ nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is beneficial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. Transmission line measurements are performed to evaluate contact resistances of Ti/Au contacts applied as well as the specific resistance of the Bi$_2$Te$_3$ binary topological insulator. In the diffusive transport regime of these unintentionally $n$-doped Bi$_2$Te$_3$ topological insulator nano Hall bars, we identify distinguishable electron trajectories by analyzing angle-dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic field orientation, these high frequent universal conductance fluctuations merge with low frequent Aharonov-Bohm type oscillations originating from the topologically protected surface states encircling the nanoribbon cross section. For 500 nm wide Hall bars we also identify low frequent Shubnikov-de Haas oscillations in the perpendicular field orientation, that reveal a topological high-mobility 2D transport channel, partially decoupled from the bulk of the material.
The ferromagnetic topological insulator V:(Bi,Sb)$_2$Te$_3$ has been recently reported as a quantum anomalous Hall (QAH) system. Yet the microscopic origins of the QAH effect and the ferromagnetism remain unclear. One key aspect is the contribution of the V atoms to the electronic structure. Here the valence band of V:(Bi,Sb)$_2$Te$_3$ thin films was probed in an element-specific way by resonant photoemission spectroscopy. The signature of the V $3d$ impurity band was extracted, and exhibits a high density of states near Fermi level. First-principles calculations support the experimental results and indicate the coexistence of ferromagnetic superexchange and double exchange interactions. The observed impurity band is thus expected to contribute to the ferromagnetism via the interplay of different mechanisms.
In this paper we present scanning tunneling microscopy of a large $textrm{Bi}_2textrm{Se}_3$ crystal with superconducting PbBi islands deposited on the surface. Local density of states measurements are consistent with induced superconductivity in the topological surface state with a coherence length of order 540 nm. At energies above the gap the density of states exhibits oscillations due to scattering caused by a nonuniform order parameter. Strikingly, the spectra taken on islands also display similar oscillations along with traces of the Dirac cone, suggesting an inverse topological proximity effect.
152 - T. V. Bay , T. Naka , Y. K. Huang 2011
We report a high-pressure single crystal study of the topological superconductor Cu$_x$Bi$_2$Se$_3$. Resistivity measurements under pressure show superconductivity is depressed smoothly. At the same time the metallic behavior is gradually lost. The upper critical field data $B_{c2}(T)$ under pressure collapse onto a universal curve. The absence of Pauli limiting and the comparison of $B_{c2}(T)$ to a polar state function point to spin-triplet superconductivity, but an anisotropic spin-singlet state cannot be discarded completely.
105 - M. P. Smylie , K. Willa , H. Claus 2017
We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological superconductor Nb$_x$Bi$_2$Se$_3$ (x = 0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature $T_c$ decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth $Deltalambda(T)$ follows a power law ($Deltalambda(T)sim T^2$) indicating the presence of symmetry-protected point nodes. Our results are consistent with the proposed robust nematic $E_u$ pairing state in this material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا