Do you want to publish a course? Click here

Robust odd-parity superconductivity in the doped topological insulator Nb$_x$Bi$_2$Se$_3$

106   0   0.0 ( 0 )
 Added by Matthew Smylie
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological superconductor Nb$_x$Bi$_2$Se$_3$ (x = 0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature $T_c$ decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth $Deltalambda(T)$ follows a power law ($Deltalambda(T)sim T^2$) indicating the presence of symmetry-protected point nodes. Our results are consistent with the proposed robust nematic $E_u$ pairing state in this material.



rate research

Read More

A state of matter with a multi-component order parameter can give rise to vestigial order. In the vestigial phase, the primary order is only partially melted, leaving a remaining symmetry breaking behind, an effect driven by strong classical or quantum fluctuations. Vestigial states due to primary spin and charge-density-wave order have been discussed in the context of iron-based and cuprate materials. Here we present the observation of a partially melted superconductor in which pairing fluctuations condense at a separate phase transition and form a nematic state with broken Z3, i.e. three-state Potts-model symmetry. High-resolution thermal expansion, specific heat and magnetization measurements of the doped topological insulator NbxBi2Se3 reveal that this symmetry breaking occurs at Tnem=3.8 K above Tc=3.25 K, along with an onset of superconducting fluctuations. Thus, before Cooper pairs establish long-range coherence at Tc, they fluctuate in a way that breaks the rotational invariance at Tnem and induces a distortion of the crystalline lattice. Similar results are found for CuxBi2Se3.
140 - T. V. Bay , T. Naka , Y. K. Huang 2011
We report a high-pressure single crystal study of the topological superconductor Cu$_x$Bi$_2$Se$_3$. Resistivity measurements under pressure show superconductivity is depressed smoothly. At the same time the metallic behavior is gradually lost. The upper critical field data $B_{c2}(T)$ under pressure collapse onto a universal curve. The absence of Pauli limiting and the comparison of $B_{c2}(T)$ to a polar state function point to spin-triplet superconductivity, but an anisotropic spin-singlet state cannot be discarded completely.
We present a novel experimental evidence for the odd-parity nematic superconductivity in high-quality single crystals of doped topological insulator Sr$_x$Bi$_2$Se$_3$. The X-ray diffraction shows that the grown single crystals are either weakly stretched or compressed uniaxially in the basal plane along one of the crystal axis. We show that in the superconducting state, the upper critical magnetic field $H_{c2}$ has a two-fold rotational symmetry and depends on the sign of the strain: in the stretched samples, the maximum of $H_{c2}$ is achieved when the in-plane magnetic field is transverse to the strain axis, while in the compressed samples this maximum is observed when the field is along the strain direction. This result is naturally explained within a framework of the odd-parity nematic superconductivity coupled to the strain. Magnetoresistance in the normal state is independent of the current direction and also has a two-fold rotational symmetry that demonstrates the nematicity of the electronic system in the normal state.
We study unconventional superconductivity in thin exfoliated single crystals of a promising 3D topological superconductor candidate, Nb-doped Bi$_2$Se$_3$ through Andreev reflection spectroscopy and magneto-transport. Measurements of Andreev reflection in low and high resistance samples both show enhanced conductance around zero bias and conductance dips at the superconducting energy gap. Such behavior is inconsistent with conventional Blonder-Tinkham-Klapwijk theory of Andreev reflection. We discuss how our results are consistent with $p$-wave pairing symmetry, supporting the possibility of topological superconductivity in Nb-doped Bi$_2$Se$_3$.
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying crystal-lattice symmetry. Particularly, superconductivity with spontaneous rotational-symmetry breaking in the wavefunction amplitude and thus in bulk properties, not yet reported previously, is intriguing and can be termed nematic superconductivity in analogy to nematic liquid-crystal phases. Here, based on specific-heat measurements of the single-crystalline Cu$_x$Bi$_2$Se$_3$ under accurate magnetic-field-direction control, we report thermodynamic evidence for nematic superconductivity, namely, clear two-fold-symmetric behavior in a trigonal lattice. The results indicate realization of an odd-parity nematic state, feasible only by macroscopic quantum condensates and distinct from nematic states in liquid crystals. The results also confirm topologically non-trivial superconductivity in Cu$_x$Bi$_2$Se$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا