Do you want to publish a course? Click here

On the stability of many-body localization in $d>1$

113   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent work by De Roeck et al. [Phys. Rev. B 95, 155129 (2017)] has argued that many-body localization (MBL) is unstable in two and higher dimensions due to a thermalization avalanche triggered by rare regions of weak disorder. To examine these arguments, we construct several models of a finite ergodic bubble coupled to an Anderson insulator of non-interacting fermions. We first describe the ergodic region using a GOE random matrix and perform an exact diagonalization study of small systems. The results are in excellent agreement with a refined theory of the thermalization avalanche that includes transient finite-size effects, lending strong support to the avalanche scenario. We then explore the limit of large system sizes by modeling the ergodic region via a Hubbard model with all-to-all random hopping: the combined system, consisting of the bubble and the insulator, can be reduced to an effective Anderson impurity problem. We find that the spectral function of a local operator in the ergodic region changes dramatically when coupling to a large number of localized fermionic states---this occurs even when the localized sites are weakly coupled to the bubble. In principle, for a given size of the ergodic region, this may arrest the avalanche. However, this back-action effect is suppressed and the avalanche can be recovered if the ergodic bubble is large enough. Thus, the main effect of the back-action is to renormalize the critical bubble size.



rate research

Read More

The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergodic and integrable systems in simpler examples of quantum chaos. We consider the evolution of the spectral statistics across the MBLT, starting with mapping to a Brownian motion process that analytically relates the spectral properties to the statistics of matrix elements. We demonstrate that the flow from Wigner-Dyson to Poisson statistics is a two-stage process. First, fractal enhancement of matrix elements upon approaching the MBLT from the metallic side produces an effective power-law interaction between energy levels, and leads to a plasma model for level statistics. At the second stage, the gas of eigenvalues has local interaction and level statistics belongs to a semi-Poisson universality class. We verify our findings numerically on the XXZ spin chain. We provide a microscopic understanding of the level statistics across the MBLT and discuss implications for the transition that are strong constraints on possible theories.
In this work we investigate the stability of an algebraically localized phase subject to periodic driving. First, we focus on a non-interacting model exhibiting algebraically localized single-particle modes. For this model we find numerically that the algebraically localized phase is stable under driving, meaning that the system remains localized at arbitrary frequencies. We support this result with analytical considerations using simple renormalization group arguments. Second, we inspect the case in which short-range interactions are added. By studying both, the eigenstates properties of the Floquet Hamiltonian and the out-of-equilibrium dynamics in the interacting model, we provide evidence that ergodicity is restored at any driving frequencies. In particular, we observe that for the accessible system sizes localization sets in at driving frequency that are comparable with the many-body bandwidth and thus it might be only transient, suggesting that the system might thermalize in the thermodynamic limit.
We study the high-energy phase diagram of a two-dimensional spin-$frac{1}{2}$ Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy for systems of up to $30times7$ lattice sites. We demonstrate the existence of a finite many-body localized phase for large disorder strength $W$ for which the eigenstate thermalization hypothesis is violated. Moreover, we show explicitly that the area law holds for excited states in this phase and determine an estimate for the critical $W_{rm{c}}$ where the transition to the ergodic phase occurs.
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specifically, we will argue that the presence of a complete set of local integrals of motion in MBL implies an efficient representation of the entire spectrum of energy eigenstates with a single tensor network, a emph{spectral} tensor network. Our results are rigorous for a class of idealized systems related to MBL with integrals of motion of finite support. In one spatial dimension, the spectral tensor network allows for the efficient computation of expectation values of a large class of operators (including local operators and string operators) in individual energy eigenstates and in ensembles.
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two models exhibiting many-body-localization: a disordered quantum spin chain and a phenomenological $l$-bit model based on the existence of local integrals of motion. We also identify a universal regime that is insensitive to the global density of states as well as spectral edge effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا