Do you want to publish a course? Click here

Fate of Algebraic Many-Body Localization under driving

201   0   0.0 ( 0 )
 Added by Heiko Burau
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we investigate the stability of an algebraically localized phase subject to periodic driving. First, we focus on a non-interacting model exhibiting algebraically localized single-particle modes. For this model we find numerically that the algebraically localized phase is stable under driving, meaning that the system remains localized at arbitrary frequencies. We support this result with analytical considerations using simple renormalization group arguments. Second, we inspect the case in which short-range interactions are added. By studying both, the eigenstates properties of the Floquet Hamiltonian and the out-of-equilibrium dynamics in the interacting model, we provide evidence that ergodicity is restored at any driving frequencies. In particular, we observe that for the accessible system sizes localization sets in at driving frequency that are comparable with the many-body bandwidth and thus it might be only transient, suggesting that the system might thermalize in the thermodynamic limit.



rate research

Read More

We study many-body localised quantum systems subject to periodic driving. We find that the presence of a mobility edge anywhere in the spectrum is enough to lead to delocalisation for any driving strength and frequency. By contrast, for a fully localised many-body system, a delocalisation transition occurs at a finite driving frequency. We present numerical studies on a system of interacting one-dimensional bosons and the quantum random energy model, as well as simple physical pictures accounting for those results.
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exists for $D=2$, but not for $D geq 3$. Specifically, a putative two-tone driven MBL chain is neither destabilized by thermal avalanches seeded by rare thermal regions, nor by the proliferation of long-range many-body resonances. For $D geq 3$, however, sufficiently large thermal regions have continuous local spectra and slowly thermalize the entire chain. En route, we generalize the eigenstate thermalization hypothesis to the quasiperiodically-driven setting, and verify its predictions numerically. Two-tone driving enables new topological orders with edge signatures; our results suggest that localization protects these orders indefinitely.
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specifically, we will argue that the presence of a complete set of local integrals of motion in MBL implies an efficient representation of the entire spectrum of energy eigenstates with a single tensor network, a emph{spectral} tensor network. Our results are rigorous for a class of idealized systems related to MBL with integrals of motion of finite support. In one spatial dimension, the spectral tensor network allows for the efficient computation of expectation values of a large class of operators (including local operators and string operators) in individual energy eigenstates and in ensembles.
The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergodic and integrable systems in simpler examples of quantum chaos. We consider the evolution of the spectral statistics across the MBLT, starting with mapping to a Brownian motion process that analytically relates the spectral properties to the statistics of matrix elements. We demonstrate that the flow from Wigner-Dyson to Poisson statistics is a two-stage process. First, fractal enhancement of matrix elements upon approaching the MBLT from the metallic side produces an effective power-law interaction between energy levels, and leads to a plasma model for level statistics. At the second stage, the gas of eigenvalues has local interaction and level statistics belongs to a semi-Poisson universality class. We verify our findings numerically on the XXZ spin chain. We provide a microscopic understanding of the level statistics across the MBLT and discuss implications for the transition that are strong constraints on possible theories.
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two models exhibiting many-body-localization: a disordered quantum spin chain and a phenomenological $l$-bit model based on the existence of local integrals of motion. We also identify a universal regime that is insensitive to the global density of states as well as spectral edge effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا