Do you want to publish a course? Click here

Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing

79   0   0.0 ( 0 )
 Added by Florian Gahbauer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV centertextquotesingle s $^{14}$N and $^{13}$C atoms. The calculations were combined with the experimental results by fitting the ODMR spectral lines based on a theoretical model, which yielded information about the polarization of nuclear spins. This study is important for the optimization of experimental conditions in GSLAC-based applications, e.g., microwave-free magnetometry and microwave-free nuclear-magnetic-resonance probes.

rate research

Read More

The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables to have an effect on the NV centers luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. The comprehensive analysis of the couplings and related optical signal at the GSLAC provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant $^{14}$NV center but the $^{15}$NV can also be utilized in such applications and that nuclear spins coupled to P1 centers can be polarized directly by the NV center at the GSLAC, through a giant effective nuclear $g$-factor arising from the NV center-P1 center-nuclear spin coupling. We report on new alternative for measuring defect concentration in the vicinity of NV centers and on the optical signatures of interacting, mutually aligned NV centers.
We report a study of the magnetic field dependence of photoluminescence of NV$^-$ centers (negatively charged nitrogen-vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp features are observed, which are coming from Level Anti-Crossings (LACs) in a coupled electron-nuclear spin system. For sensitive detection of such LAC-lines we use lock-in detection to measure the photoluminescence intensity. This experimental technique allows us to obtain new LAC lines. Additionally, a remarkably strong dependence of the LAC-lines on the modulation frequency is found. Specifically, upon decrease of the modulation frequency from 12 kHz to 17 Hz the amplitude of the LAC-lines increases by approximately two orders of magnitude. To take a quantitative account for such effects, we present a theoretical model, which describes the spin dynamics in a coupled electron-nuclear spin system under the action of an oscillating external magnetic field. Good agreement between experiments and theory allows us to conclude that the observed effects are originating from coherent spin polarization exchange in a coupled spin system comprising the spin-polarized NV$^-$ center. Our results are of great practical importance allowing one to optimize the experimental conditions for probing LAC-derived lines in diamond crystals comprising NV$^-$ centers and for indirect detection and identification of other paramagnetic defect centers.
We report a study of the magnetic field dependence of the photo-luminescence of NV$^-$ centers (negatively charged nitrogen-vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic lines are observed, which are coming from Level Anti-Crossings (LACs) in the coupled electron-nuclear spin system. For enhancing the sensitivity, we used lock-in detection to measure the photo-luminescence intensity and observed a remarkably strong dependence of the LAC-derived lines on the modulation frequency. Upon decreasing of the modulation frequency from 12 kHz to 17 Hz the amplitude of the lines increases by approximately two orders of magnitude. To take a quantitative account for such effects, we developed a theoretical model, which describes the spin dynamics in the coupled electron-nuclear spin system under the action of an oscillating external magnetic field. Good agreement between experiments and theory allows us to conclude that the observed effects are originating from coherent spin polarization exchange in the NV$^-$ center. Our results are of great practical importance allowing one to optimize the experimental conditions for probing LAC-derived lines in diamond defect centers.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. Strong coupling in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond optomechanical crystals as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times $T_2^* = 1.5 mu s$ and $T_2 = 72 mu s$ despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.
Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning over two orders of magnitude. Motivated by this understanding, we propose and implement a novel method for the nanoscale localization of individual charges within the diamond lattice; our approach relies upon the fact that the charge induces an NV dark state which depends on the electric field orientation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا