Do you want to publish a course? Click here

Enhanced low-energy $gamma$-decay strength of $^{70}$Ni and its robustness within the shell model

301   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their $gamma$-emission probability at very low $gamma$ energies. In this work, we present measurements of the $gamma$-decay strength of $^{70}$Ni over the wide range $1.3 leq E_{gamma} leq 8 $ MeV. A significant enhancement is found in the $gamma$-decay strength for transitions with $E_gamma < 3$ MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed $E1$-strength calculations within the quasiparticle time-blocking approximation, which describe our data above $E_gamma simeq 5$ MeV very well. Moreover, large-scale shell-model calculations indicate an $M1$ nature of the low-energy $gamma$ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich $^{72,74,76}mathrm{Ni}$.



rate research

Read More

We report the observation of a very exotic decay mode at the proton drip-line, the $beta$-delayed $gamma$-proton decay, clearly seen in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed after the $beta$ decay. Here this decay mode, already observed in the $sd$-shell, is seen for the first time in the $fp$-shell. Both $gamma$ and proton decays have been taken into account in the estimation of the Fermi (F) and Gamow Teller (GT) strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.
Experimental tests of the Brink-Axel hypothesis relating gamma strength functions (GSF) deduced from absorption and emission experiments are discussed. High-resolution inelastic proton scattering at energies of a few hundred MeV and at very forwrd angles including $0^circ$ presents a new approach to test the validity of the BA hypothesis in the energy region of the pygmy dipole resonance. Such data not only provide the GSF but also the level density and thus permit an independent test of their model-dependent decomposition in the Oslo method.
Nuclear level densities and $gamma$-ray strength functions have been extracted for $^{59, 60}rm{Ni}$, using the Oslo method on data sets from the $^{60}$Ni($^{3}$He,$^{3}$He$^{prime}gamma$)$^{60}$Ni and $^{60}$Ni($^{3}$He,$alphagamma$)$^{59}$Ni reactions. Above the neutron separation energy, S$_n$, we have measured the $gamma$-ray strength functions for $^{61}$Ni and $^{60}$Ni in photoneutron experiments. The low-energy part of the $^{59,60}$Ni $gamma$-ray strength functions show an increase for decreasing $gamma$ energies. The experimental $gamma$-ray strength functions are compared with $M1$ $gamma$-ray strength functions calculated within the shell model. The $E1$ $gamma$-ray strength function of $^{60}$Ni has been calculated using the QTBA framework. The QTBA calculations describe the data above $E_{gamma}approx$ 7 MeV, while the shell-model calculations agree qualitatively with the low energy part of the $gamma$-ray strength function. Hence, we give a plausible explanation of the observed shape of the $gamma$-decay strength.
We studied the proton-rich $T_z=-1$ nucleus $^{70}$Kr through inelastic scattering at intermediate energies in order to extract the reduced transition probability, $B(E2;;0^+ rightarrow 2^+)$. Comparison with the other members of the $A=70$ isospin triplet, $^{70}$Br and $^{70}$Se, studied in the same experiment, shows a $3sigma$ deviation from the expected linearity of the electromagnetic matrix elements as a function of $T_z$. At present, no established nuclear structure theory can describe this observed deviation quantitatively. This is the first violation of isospin symmetry at this level observed in the transition matrix elements. A heuristic approach may explain the anomaly by a shape change between the mirror nuclei $^{70}$Kr and $^{70}$Se contrary to the model predictions.
Shell evolution is studied in the neutron-rich silicon isotopes 36,38,40 Si using neutron single-particle strengths deduced from one-neutron knockout reactions. Configurations involving neutron excita- tions across the N = 20 and N = 28 shell gaps are quantified experimentally in these rare isotopes. Comparisons with shell model calculations show that the tensor force, understood to drive the col- lective behavior in 42 Si with N = 28, is already important in determining the structure of 40 Si with N = 26. New data relating to cross-shell excitations provide the first quantitative support for repulsive contributions to the cross-shell T = 1 interaction arising from three-nucleon forces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا