Do you want to publish a course? Click here

Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons

67   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-Einstein condensate. We treat them as two quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. The Langevin-like quantum stochastic equations derived exhibit memory effects. We study two scenarios: (i) In the absence of an external potential, we observe sudden death of entanglement; (ii) In the presence of an external harmonic potential, entanglement survives even at the asymptotic time limit. Our study considers experimentally tunable parameters.



rate research

Read More

We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion relation in the presence of an intercomponent tunneling (a Rabi coupling) and a gapped dispersion relation in its absence. These spectral features are associated with the emergence of long-range interactions in terms of the superfluid velocity and the particle density in the entanglement Hamiltonian. Our results demonstrate that unusual long-range interactions can be emulated in a subsystem of multicomponent BECs that have only short-range interactions. We also find that for a finite Rabi coupling the entanglement entropy exhibits a volume-law scaling with subleading logarithmic corrections originating from the Nambu-Goldstone mode and the symmetry restoration for a finite volume.
We introduce a novel minimally-disturbing method for sub-nK thermometry in a Bose-Einstein condensate (BEC). Our technique is based on the Bose-polaron model; namely, an impurity embedded in the BEC acts as the thermometer. We propose to detect temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal back-action on the BEC and hence, realize a non-demolition temperature measurement. Following the paradigm of the emerging field of textit{quantum thermometry}, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid textit{any} simplification, such as demanding thermalization of the impurity atoms, or imposing weak dissipative interactions with the BEC. Our method is illustrated with realistic experimental parameters common in many labs, thus showing that it can compete with state-of-the-art textit{destructive} techniques, even when the estimates are built from the outcomes of accessible (sub-optimal) quadrature measurements.
We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue, signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا