Do you want to publish a course? Click here

S-matrix Unitarity and Renormalizability in Higher Derivative Theories

76   0   0.0 ( 0 )
 Added by Tomotaka Kitamura
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the relation between the $S$-matrix unitarity ($SS^{dagger}=1$) and the renormalizability, in theories with negative norm states. The relation has been confirmed in many theories, such as gauge theories, Einstein gravity and Lifshitz-type non-relativistic theories by analyzing the unitarity bound, which follows from the $S$-matrix unitarity and the norm positivity. On the other hand, renormalizable theories with a higher derivative kinetic term do not necessarily satisfy the unitarity bound essentially because the unitarity bound does not hold due to the negative norm states. In these theories, it is not clear if the $S$-matrix unitarity provides a nontrivial constraint related to the renormalizability. In this paper we introduce scalar field models with a higher derivative kinetic term and analyze the $S$-matrix unitarity. We have positive results of the relation.



rate research

Read More

164 - N. Tetradis 2012
We present exact classical solutions of the higher-derivative theory that describes the dynamics of the position modulus of a probe brane within a five-dimensional bulk. The solutions can be interpreted as static or time-dependent throats connecting two parallel branes. In the nonrelativistic limit the brane action is reduced to that of the Galileon theory. We derive exact solutions for the Galileon, which reproduce correctly the shape of the throats at large distances, but fail to do so for their central part. We also determine the parameter range for which the Vainshtein mechanism is reproduced within the brane theory.
We study holographic shear sum rules in Einstein gravity with curvature squared corrections. Sum rules relate weighted integral over spectral densities of retarded correlators in the shear channel to the one point functions of the CFTs. The proportionality constant can be written in terms of the data of three point functions of the stress tenors of the CFT ($t_2$ and $t_4$). For CFTs dual to two derivative Einstein gravity, this proportionality constant is just $frac{d}{2(d+1)}$. This has been verified by a direct holographic computation of the retarded correlator for Einstein gravity in $AdS_{d+1}$ black hole background. We compute corrections to the holographic shear sum rule in presence of higher derivative corrections to the Einstein-Hilbert action. We find agreement between the sum rule obtained from a general CFT analysis and holographic computation for Gauss Bonnet theories in $AdS_5$ black hole background. We then generalize the sum rule for arbitrary curvature squared corrections to Einstein-Hilbert action in $dgeq 4$. Evaluating the parameters $t_2$ and $t_4$ for the possible dual CFT in presence of such curvature corrections, we find an agreement with the general field theory derivation to leading order in coupling constants of the higher derivative terms.
We show that in the quadratic curvature theory of gravity, or simply $R_{mu u} ^2$ gravity, the tree-level unitariy bound (tree unitarity) is violated in the UV region but an analog for $S$-matrix unitarity ($SS^{dagger} = 1$) is satisfied. This theory is renormalizable, and hence the failure of tree unitarity is a counter example of Llewellyn Smiths conjecture on the relation between them. We have recently proposed a new conjecture that $S$-matrix unitarity gives the same conditions as renormalizability. We verify that $S$-matrix unitarity holds in the matter-graviton scattering at tree level in the $R_{mu u} ^2$ gravity, demonstrating our new conjecture.
We propose a type of non-anticommutative superspace, with the interesting property of relating to Lee-Wick type of higher derivatives theories, which are known for their interesting properties, and have lead to proposals of phenomenologicaly viable higher derivatives extensions of the Standard Model. The deformation of superspace we consider does not preserve supersymmetry or associativity in general; however, we show that a non-anticommutative version of the Wess-Zumino model can be properly defined. In fact, the definition of chiral and antichiral superfields turns out to be simpler in our case than in the well known ${cal N}=1/2$ supersymmetric case. We show that, when the theory is truncated at the first nontrivial order in the deformation parameter, supersymmetry is restored, and we end up with a well known Lee-Wick type of higher derivative extension of the Wess-Zumino model. Thus we show how non-anticommutative could provide an alternative mechanism for generation of these kind of higher derivative theories.
78 - Taichiro Kugo 2021
In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily high order derivative fields, the Noether currents for the global translation and for the Nakanishis IOSp(8|8) choral symmetry containing the BRS symmetry as its member, are constructed. We generally show that for each of those Noether currents a suitable linear combination of equations of motion can be brought into the form of Maxwell-type field equation possessing the Noether current as its source term.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا