Do you want to publish a course? Click here

Evaluating `elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points

91   0   0.0 ( 0 )
 Added by Alexander Smirnov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

This is a sequel of our previous paper where we described an algorithm to find a solution of differential equations for master integrals in the form of an $epsilon$-expansion series with numerical coefficients. The algorithm is based on using generalized power series expansions near singular points of the differential system, solving difference equations for the corresponding coefficients in these expansions and using matching to connect series expansions at two neighboring points. Here we use our algorithm and the corresponding code for our example of four-loop generalized sunset diagrams with three massive and two massless propagators, in order to obtain new analytical results. We analytically evaluate the master integrals at threshold, $p^2=9 m^2$, in an expansion in $epsilon$ up to $epsilon^1$. With the help of our code, we obtain numerical results for the threshold master integrals in an $epsilon$-expansion with the accuracy of 6000 digits and then use the PSLQ algorithm to arrive at analytical values. Our basis of constants is build from bases of multiple polylogarithm values at sixth roots of unity.



rate research

Read More

We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. nontrivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer implementation of our algorithm in a simple example of four-loop generalized sun-set integrals with three equal non-zero masses. Our code provides values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter $epsilon$.
We study generating functions of moduli-space integrals at genus one that are expected to form a basis for massless $n$-point one-loop amplitudes of open superstrings and open bosonic strings. These integrals are shown to satisfy the same type of linear and homogeneous first-order differential equation w.r.t. the modular parameter $tau$ which is known from the A-elliptic Knizhnik--Zamolodchikov--Bernard associator. The expressions for their $tau$-derivatives take a universal form for the integration cycles in planar and non-planar one-loop open-string amplitudes. These differential equations manifest the uniformly transcendental appearance of iterated integrals over holomorphic Eisenstein series in the low-energy expansion w.r.t. the inverse string tension $alpha$. In fact, we are led to matrix representations of certain derivations dual to Eisenstein series. Like this, also the $alpha$-expansion of non-planar integrals is manifestly expressible in terms of iterated Eisenstein integrals without referring to twisted elliptic multiple zeta values. The degeneration of the moduli-space integrals at $tau rightarrow iinfty$ is expressed in terms of their genus-zero analogues -- $(n{+}2)$-point Parke--Taylor integrals over disk boundaries. Our results yield a compact formula for $alpha$-expansions of $n$-point integrals over boundaries of cylinder- or Moebius-strip worldsheets, where any desired order is accessible from elementary operations.
115 - O. Gituliar , V. Magerya 2016
We report on the recent progress in reducing differential equations for Feynman master integrals to canonical form with the help of a method proposed by Roman Lee. For the first time, we present Fuchsia --- our open-source implementation of the Lee algorithm written in Python using mathematical routines of a free computer algebra system SageMath. We demonstrate Fuchsia by reducing differential equations for NLO contributions to splitting functions in QCD, which contain both loops and legs integrals.
359 - B. M. McCoy , J-M. Maillard 2016
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers-Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorised in a very simple way, in operators of decreasing orders.
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا