Do you want to publish a course? Click here

Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

66   0   0.0 ( 0 )
 Added by Burkhard Eden
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.



rate research

Read More

We elucidate the vector space (twisted relative cohomology) that is Poincare dual to the vector space of Feynman integrals (twisted cohomology) in general spacetime dimension. The pairing between these spaces - an algebraic invariant called the intersection number - extracts integral coefficients for a minimal basis, bypassing the generation of integration-by-parts identities. Dual forms turn out to be much simpler than their Feynman counterparts: they are supported on maximal cuts of various sub-topologies (boundaries). Thus, they provide a systematic approach to generalized unitarity, the reconstruction of amplitudes from on-shell data. In this paper, we introduce the idea of dual forms and study their mathematical structures. As an application, we derive compact differential equations satisfied by arbitrary one-loop integrals in non-integer spacetime dimension. A second paper of this series will detail intersection pairings and their use to extract integral coefficients.
239 - Johannes M. Henn 2014
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to differential equations for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that allows based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the differential equations. Finally, as an application of the differential equations method we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a differential equation.
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.
We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, the differential equations can thus be computed using unitarity-compatible integration-by-parts reductions, which simplify the reduction problem by avoiding integrals with higher-power propagators.
We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. nontrivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer implementation of our algorithm in a simple example of four-loop generalized sun-set integrals with three equal non-zero masses. Our code provides values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter $epsilon$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا