Do you want to publish a course? Click here

Natural Higgs Inflation, Gauge Coupling Unification, and Neutrino Masses

154   0   0.0 ( 0 )
 Added by Lina Wu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present a class of non-supersymmetric models in which so-called critical Higgs inflation ($xi<100$) naturally can be realized without using specific values for Higgs and top quark masses. In these scenarios, the Standard Model (SM) vacuum stability problem, gauge coupling unification, neutrino mass generation and Higgs inflation mechanism are linked to each other. We adopt in our models Type I seesaw mechanism for neutrino masses. An appropriate choice of the Type I Seesaw scale allows us to have an arbitrarily small but positive value of SM Higgs quartic coupling around the inflation scale. We present a few benchmark points where we show that the scalar spectral indices are around 0.9626 and 0.9685 for the number of e-folding $N=50$ and $N=60$ respectively. The tensor-to-scalar ratios are order of $10^{-3}$. The running of the scalar spectral index is negative and is order of $10^{-4}$.



rate research

Read More

Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group 3311, whose spontaneous breaking leaves a residual conserved matter parity, $M_{P}$, stabilizing the DM particle candidates of the model. A key role is played by the Majorana ${rm SU(3)_{L}}$-octet leptons, in allowing successful gauge coupling unification and one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a emph{plethora} of new particles at the $lsim mathcal{O}$(10) TeV scale, hence accessible to future collider and low-energy experiments.
We consider the triple coupling of the Higgs boson in the context of the gauge-Higgs unification scenario. We show that the triple coupling of the Higgs boson in this scenario generically deviates from SM prediction since the Higgs potential in this scenario has a periodicity. We calculate the coupling in the five-dimensional $SU(3)$ x $U(1)_X$ gauge-Higgs unification model and obtain 70% deviation from the SM prediction.
316 - Yutaka Hosotani 2012
When the extra dimensional space is not simply-connected, dynamics of the AB phase in the extra dimension can induce dynamical gauge symmetry breaking by the Hosotani mechanism. This opens up a new way of achieving unification of gauge forces. It leads to the gauge-Higgs unification. The Hosotani mechanism can be established nonperturbatively by lattice simulations, in which measurements of the Polyakov line give a clue.
Gauge-Higgs grand unification is formulated. By extending $SO(5) times U(1)_X$ gauge-Higgs electroweak unification, strong interactions are incorporated in $SO(11)$ gauge-Higgs unification in the Randall-Sundrum warped space. Quarks and leptons are contained in spinor and vector multiplets of $SO(11)$. Although the KK scale can be as low as $10 $ TeV, proton decay is forbidden by a conserved fermion number in the absence of Majorana masses of neutrinos.
130 - Yutaka Hosotani 2016
4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase $theta_H$ in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for $theta_H < 0.1$, and predicts $Z$ bosons around 6 - 10 TeV with very broad widths. The scenario is genelarized to $SO(11)$ gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of $SO(11)$. Proton decay is naturally forbidden.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا