No Arabic abstract
We report on a first census of Galactic black hole X-ray binary (BHXRB) properties with the second data release (DR2) of {em Gaia}, focusing on dynamically confirmed and strong candidate black hole transients. DR2 provides five-parameter astrometric solutions including position, parallax and proper motion for 11 of a sample of 24 systems. Distance estimates are tested with parallax inversion as well as Bayesian inference. We derive an empirically motivated characteristic scale length of $L$=2.17$pm$0.12 kpc for this BHXRB population to infer distances based upon an exponentially decreasing space density prior. Geometric DR2 parallaxes provide new, independent distance estimates, but the faintness of this population in quiescence results in relatively large fractional distance uncertainties. Despite this, DR2 estimates generally agree with literature distances. The most discrepant case is BW Cir, for which detailed studies of the donor star have suggested a distant location at >~25 kpc. A large DR2 measured parallax and relatively high proper motion instead prefer significantly smaller distances, suggesting that the source may instead be amongst the nearest of XRBs. However, both distances create problems for interpretation of the source, and follow-up data are required to resolve its true nature. DR2 also provides a first distance estimate to one source, MAXI J1820+070, and novel proper motion estimates for 7 sources. Peculiar velocities relative to Galactic rotation exceed $sim$ 50 km s$^{-1}$ for the bulk of the sample, with a median system kinetic energy of peculiar motion of $sim$ 5 $times$ 10$^{47}$ erg. BW Cir could be a new high-velocity BHXRB if its astrometry is confirmed. A putative anti-correlation between peculiar velocity and black hole mass is found, as expected in mass-dependent BH kick formation channels, but this trend remains weak in the DR2 data.
We examine parallaxes and distances for Galactic luminous blue variables (LBVs) in Gaia DR2. The sample includes 11 LBVs and 14 LBV candidates. For about half of the sample, DR2 distances are either similar to commonly adopted literature values, or the DR2 values have large uncertainties. For the rest, reliable DR2 distances differ significantly from values in the literature, and in most cases the Gaia DR2 distance is smaller. Two key results are that the S Doradus instability strip may not be as clearly defined as previously thought, and that there exists a population of LBVs at relatively low luminosities. LBVs seem to occupy a wide swath from the end of the main sequence at the blue edge to 8000 K at the red side, with a spread in luminosity reaching as low as log(L/Lsun)=4.5. The lower-luminosity group corresponds to effective single-star initial masses of 10-25 Msun, and includes objects that have been considered as confirmed LBVs. We discuss implications for LBVs including (1) their instability and origin in binary evolution, (2) connections to some supernova (SN) impostors such as the class of SN 2008S-like objects, and (3) LBVs that may be progenitors of SNe with dense circumstellar material across a wide initial mass range. Although some of the Gaia DR2 distances for LBVs have large uncertainty, this represents the most direct and consistent set of Galactic LBV distance estimates available in the literature.
Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associated with their bright outbursts. This has led to the definition of a small number of spectral/timing states which are separated by marked transitions in observables. The association of these states and their transitions to changes in the radio emission from relativistic radio jets completes the picture and have led to the study of the connection between accretion and ejection. A good number of fundamental questions are still unanswered, but the existing picture provides a good framework on which to base theoretical studies. We discuss the current observational standpoint, with emphasis onto the spectral and timing evolution during outbursts, as well as the prospects for future missions such as ASTROSAT (2012) and LOFT (>2020 if selected).
There remain significant uncertainties in the origin and evolution of black holes in binary systems, in particular regarding their birth sites and the influence of natal kicks. These are long-standing issues, but their debate has been reinvigorated in the era of gravitational wave detections and the improving precision of astrometric measurements. Using recent and archival characterisation of Galactic black hole X-ray binaries (BHXBs), we report here an apparent anticorrelation between P{orb} (system orbital periods) and scatter in z (elevation above the Galactic plane). The absence of long period sources at high z is not an obvious observational bias, and two possible explanatory scenarios are qualitatively explored: (1) a disc origin for BHXBs followed by natal kicks producing the scatter in z, with only the tightest binaries preferentially surviving strong kicks; (2) a halo origin, with P{orb} shortening through dynamical interactions in globular clusters (GCs). For the latter case, we show a correspondence in z-scatter between BHXBs and the GCs with most compact core radii of <0.1pc. However, the known absence of outbursting BHXB transients within Galactic GCs remains puzzling in this case, in contrast to the multitude of known GC neutron star XRBs. These results provide an interesting observational constraint for any black hole binary evolutionary model to satisfy.
Surveys of galaxy distances and radial peculiar velocities can be used to reconstruct the large scale structure. Other than systematic errors in the zero-point calibration of the galaxy distances the main source of uncertainties of such data are errors on the distance moduli, assumed here to be Gaussian and thus turn into lognormal errors on distances and velocities. Naively treated, it leads to spurious nearby outflow and strong infall at larger distances. The lognormal bias is corrected here and tested against mock data extracted from a $Lambda$CDM simulation, designed to statistically follow the grouped Cosmicflows-3 (CF3) data. Considering a subsample of data points, all of which have the same true distances or same redshifts, the lognormal bias arises because the means of the distributions of observed distances and velocities are skewed off the means of the true distances and velocities. Yet, the medians are invariant under the lognormal transformation. That invariance allows the Gaussianization of the distances and velocities and the removal of the lognormal bias. This Bias Gaussianization correction (BGc) algorithm is tested against mock CF3 catalogs. The test consists of a comparison of the BGC estimated with the simulated distances and velocities and of an examination of the Wiener filter reconstruction from the BGc data. Indeed, the BGc eliminates the lognormal bias. The estimation of Hubbles ($H_{0}$) constant is also tested. The residual of the BGc estimated $H_{0}$ from the simulated values is $0.6 pm 0.7 {rm kms}^{-1}{rm Mpc}^{-1}$ and is dominated by the cosmic variance. The BGc correction of the actual CF3 data yields $H_{0} = 75.8 pm 1.1 {rm kms}^{-1}{rm Mpc}^{-1}$ .
We search for the gamma-ray counterparts of stellar-mass black holes using long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, by applying the pulsar outer-gap model to their magnetosphere. When a black hole transient (BHT) is in a low-hard or quiescent state, the radiatively inefficient accretion flow cannot emit enough MeV photons that are required to sustain the force-free magnetosphere in the polar funnel via two-photon collisions. In this charge-starved gap region, an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma-rays via the curvature and inverse-Compton (IC) processes. It is found that these gamma-ray emissions exhibit a flaring activity when the plasma accretion rate stays typically between 0.01 and 0.005 percent of the Eddington value for rapidly rotating, stellar-mass black holes. By analyzing the detection limit determined from archival Fermi/LAT data, we find that the 7-year averaged duty cycle of such flaring activities should be less than 5% and 10% for XTE J1118+480 and 1A 0620-00, respectively, and that the detection limit is comparable to the theoretical prediction for V404 Cyg. It is predicted that the gap emission can be discriminated from the jet emission, if we investigate the high-energy spectral behaviour or observe nearby BHTs during deep quiescence simultaneously in infrared wavelength and very-high energies.