Do you want to publish a course? Click here

4D Temporally Coherent Light-field Video

88   0   0.0 ( 0 )
 Added by Armin Mustafa
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Light-field video has recently been used in virtual and augmented reality applications to increase realism and immersion. However, existing light-field methods are generally limited to static scenes due to the requirement to acquire a dense scene representation. The large amount of data and the absence of methods to infer temporal coherence pose major challenges in storage, compression and editing compared to conventional video. In this paper, we propose the first method to extract a spatio-temporally coherent light-field video representation. A novel method to obtain Epipolar Plane Images (EPIs) from a spare light-field camera array is proposed. EPIs are used to constrain scene flow estimation to obtain 4D temporally coherent representations of dynamic light-fields. Temporal coherence is achieved on a variety of light-field datasets. Evaluation of the proposed light-field scene flow against existing multi-view dense correspondence approaches demonstrates a significant improvement in accuracy of temporal coherence.

rate research

Read More

This paper presents an approach for reconstruction of 4D temporally coherent models of complex dynamic scenes. No prior knowledge is required of scene structure or camera calibration allowing reconstruction from multiple moving cameras. Sparse-to-dense temporal correspondence is integrated with joint multi-view segmentation and reconstruction to obtain a complete 4D representation of static and dynamic objects. Temporal coherence is exploited to overcome visual ambiguities resulting in improved reconstruction of complex scenes. Robust joint segmentation and reconstruction of dynamic objects is achieved by introducing a geodesic star convexity constraint. Comparative evaluation is performed on a variety of unstructured indoor and outdoor dynamic scenes with hand-held cameras and multiple people. This demonstrates reconstruction of complete temporally coherent 4D scene models with improved nonrigid object segmentation and shape reconstruction.
This paper proposes a novel deep learning-based video object matting method that can achieve temporally coherent matting results. Its key component is an attention-based temporal aggregation module that maximizes image matting networks strength for video matting networks. This module computes temporal correlations for pixels adjacent to each other along the time axis in feature space, which is robust against motion noises. We also design a novel loss term to train the attention weights, which drastically boosts the video matting performance. Besides, we show how to effectively solve the trimap generation problem by fine-tuning a state-of-the-art video object segmentation network with a sparse set of user-annotated keyframes. To facilitate video matting and trimap generation networks training, we construct a large-scale video matting dataset with 80 training and 28 validation foreground video clips with ground-truth alpha mattes. Experimental results show that our method can generate high-quality alpha mattes for various videos featuring appearance change, occlusion, and fast motion. Our code and dataset can be found at: https://github.com/yunkezhang/TCVOM
We present a method to capture temporally coherent dynamic clothing deformation from a monocular RGB video input. In contrast to the existing literature, our method does not require a pre-scanned personalized mesh template, and thus can be applied to in-the-wild videos. To constrain the output to a valid deformation space, we build statistical deformation models for three types of clothing: T-shirt, short pants and long pants. A differentiable renderer is utilized to align our captured shapes to the input frames by minimizing the difference in both silhouette, segmentation, and texture. We develop a UV texture growing method which expands the visible texture region of the clothing sequentially in order to minimize drift in deformation tracking. We also extract fine-grained wrinkle detail from the input videos by fitting the clothed surface to the normal maps estimated by a convolutional neural network. Our method produces temporally coherent reconstruction of body and clothing from monocular video. We demonstrate successful clothing capture results from a variety of challenging videos. Extensive quantitative experiments demonstrate the effectiveness of our method on metrics including body pose error and surface reconstruction error of the clothing.
Existing techniques for dynamic scene reconstruction from multiple wide-baseline cameras primarily focus on reconstruction in controlled environments, with fixed calibrated cameras and strong prior constraints. This paper introduces a general approach to obtain a 4D representation of complex dynamic scenes from multi-view wide-baseline static or moving cameras without prior knowledge of the scene structure, appearance, or illumination. Contributions of the work are: An automatic method for initial coarse reconstruction to initialize joint estimation; Sparse-to-dense temporal correspondence integrated with joint multi-view segmentation and reconstruction to introduce temporal coherence; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes by introducing shape constraint. Comparison with state-of-the-art approaches on a variety of complex indoor and outdoor scenes, demonstrates improved accuracy in both multi-view segmentation and dense reconstruction. This paper demonstrates unsupervised reconstruction of complete temporally coherent 4D scene models with improved non-rigid object segmentation and shape reconstruction and its application to free-viewpoint rendering and virtual reality.
Recent research has witnessed the advances in facial image editing tasks. For video editing, however, previous methods either simply apply transformations frame by frame or utilize multiple frames in a concatenated or iterative fashion, which leads to noticeable visual flickers. In addition, these methods are confined to dealing with one specific task at a time without any extensibility. In this paper, we propose a task-agnostic temporally consistent facial video editing framework. Based on a 3D reconstruction model, our framework is designed to handle several editing tasks in a more unified and disentangled manner. The core design includes a dynamic training sample selection mechanism and a novel 3D temporal loss constraint that fully exploits both image and video datasets and enforces temporal consistency. Compared with the state-of-the-art facial image editing methods, our framework generates video portraits that are more photo-realistic and temporally smooth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا