Do you want to publish a course? Click here

Single-Nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet

183   0   0.0 ( 0 )
 Added by Hsi-Sheng Goan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensemble of NV centers, the YIG moderator can enhance the effective FQ-NV-center coupling strength without introducing additional appreciable decoherence. We derive the effective interaction between the FQ and the NV center by tracing out the degrees of freedom of the collective mode of the YIG spins. We demonstrate the transfer, storage, and retrieval procedures, taking into account the effects of spontaneous decay and pure dephasing. Using realistic experimental parameters for the FQ, NV center and YIG, we find that a combined transfer, storage, and retrieval fidelity higher than 0.9, with a long storage time of 10 ms, can be achieved. This hybrid system not only acts as a promising quantum memory, but also provides an example of enhanced coupling between various systems through collective degrees of freedom.

rate research

Read More

The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring and validate the foundations of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new route for implementing what Schrodinger termed quantum steering-harnessing action at a distance to manipulate quantum states via measurement.
We theoretically study the longitudinal relaxation of a nitrogen-vacancy (NV) center surrounded by a 13C nuclear spin bath in diamond. By incorporating electron spin in the cluster, we generalize the cluster-correlation expansion (CCE) to theoretically simulate the population dynamics of electron spin of NV center. By means of the generalized CCE, we numerically demonstrate the decay process of electronic state induced by cross relaxation at the ambient temperature. It is shown that the CCE method is not only capable of describing pure-dephasing effect at large-detuning regime, but it can also simulate the quantum dynamics of populations in the nearly-resonant regime.
Quantum computers have the potential to speed up certain problems that are hard for classical computers. Hybrid systems, such as the nitrogen vacancy (NV) center in diamond, are among the most promising systems to implement quantum computing, provided the control of the different types of qubits can be efficiently implemented. In the case of the NV center, the anisotropic hyperfine interaction allows one to control the nuclear spins indirectly, through gate operations targeting the electron spin, combined with free precession. Here we demonstrate that this approach allows one to implement a full quantum algorithm, using the example of Grovers quantum search in a single NV center, whose electron is coupled to a carbon nuclear spin. The results clearly demonstrate the advantage of the quantum algorithm over the classical case.
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical FDTD simulations we determine a lower and upper bound for the coupling efficiency of (9.5+/-0.6)% and (10.4+/-0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا