Do you want to publish a course? Click here

A Computational Study of the Collapse of a Cloud with 12500 Gas Bubbles in a Liquid

89   0   0.0 ( 0 )
 Added by Petr Karnakov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the process of cloud cavitation collapse through large-scale simulation of a cloud composed of 12500 gas bubbles. A finite volume scheme is used on a structured Cartesian grid to solve the Euler equations, and the bubbles are discretized by a diffuse interface method. We investigate the propagation of the collapse wave front through the cloud and provide comparisons to simplified models. We analyze the flow field to identify each bubble of the cloud and its associated microjet. We find that the oscillation frequency of the bubbles and the velocity magnitude of the microjets depend on the local strength of the collapse wave and hence on the radial position of the bubbles in the cloud. At the same time, the direction of the microjets is influenced by the distribution of the bubbles in its vicinity. Finally, an analysis of the pressure pulse spectrum shows that the pressure pulse rate is well captured by an exponential law.



rate research

Read More

Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel-type oscillations which can envelope pseudo-Landau level features in certain regions of the bubble. However, bubbles which minimise interference effects are also unsuitable for pseudo-Landau level formation due to more spatially varying field profiles.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-order hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme. The multi-level MPI/OpenMP parallelization is implemented with the aim to efficiently utilise the computational resources to allow direct simulation of rarefied gas flows in porous media based on digital rock images for the first time. The multi-level parallel approach is analyzed in details confirming its better performance than the commonly-used MPI processing alone for an iterative scheme. With high communication efficiency and appropriate load balancing among CPU processes, parallel efficiency of 94% is achieved for 1536 cores in the 2D simulations, and 81% for 12288 cores in the 3D simulations. While decomposition in the spatial space does not affect the simulation results, one additional benefit of this approach is that the number of subdomains can be kept minimal to avoid deterioration of the convergence rate of the iteration process. This multi-level parallel approach can be readily extended to solve other Boltzmann model equations.
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas distribution function using particle velocity characteristic line, flux contains more detailed information of fluid flow and more concrete physical nature. In this work, a simplified DUGKS is proposed with reconstruction stage on a whole time step instead of half time step in original DUGKS. Using temporal/spatial integral Boltzmann Bhatnagar-Gross-Krook (BGK) equation, the transformed distribution function with inclusion of collision effect is constructed. The macro and mesoscopic fluxes of the cell on next time step is predicted by reconstruction of transformed distribution function at interfaces along particle velocity characteristic lines. According to the conservation law, the macroscopic variables of the cell on next time step can be updated through its macroscopic flux. Equilibrium distribution function on next time step can also be updated. Gas distribution function is updated by FV scheme through its predicted mesoscopic flux in a time step. Compared with the original DUGKS, the computational process of the proposed method is more concise because of the omission of half time step flux calculation. Numerical time step is only limited by the Courant-Friedrichs-Lewy (CFL) condition and relatively good stability has been preserved. Several test cases, including the Couette flow, lid-driven cavity flow, laminar flows over a flat plate, a circular cylinder, and an airfoil, as well as micro cavity flow cases are conducted to validate present scheme. The numerical simulation results agree well with the references results.
365 - C.L. Tian , K. Xu , K.L. Chan 2008
This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction of a well-balanced scheme for gas dynamic equations are addressed. First, the inclusion of the gravitational source term into the flux function is necessary. Second, to achieve second-order accuracy of a well-balanced scheme, the Chapman-Enskog expansion of the Boltzmann equation with the inclusion of the external force term is used. Third, to avoid artificial heating in an isolated system under a gravitational field, the source term treatment inside each cell has to be evaluated consistently with the flux evaluation at the cell interface. Fourth, the multidimensional approach with the inclusion of tangential gradients in two-dimensional and three-dimensional cases becomes important in order to maintain the accuracy of the scheme. Many numerical examples are used to validate the above issues, which include the comparison between the solutions from the current scheme and the Strang splitting method. The methodology developed in this paper can also be applied to other systems, such as semi-conductor device simulations under electric fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا