Do you want to publish a course? Click here

Evidence for maximality of strong interactions from LHC forward data

43   0   0.0 ( 0 )
 Added by Evgenij Martynov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

It is important to check if the Froissaron-Maximal Odderon (FMO) approach is the only model in agreement with the LHC data. We therefore generalized the FMO approach by relaxing the $ln^2s$ constraints both in the even-and odd-under-crossing amplitude. We show that, in spite of a considerable freedom of a large class of amplitudes, the best fits bring us back to the maximality of strong interaction. Moreover, if we leave Odderon Regge pole intercept $alpha_O(0)$ completely free we find a very good solution for $alpha_O(0)$ near -1 in agreement with the result of oddballs spectroscopy in QCD based on AdS/CFT correspondence.

rate research

Read More

Dynamical electroweak symmetry breaking (DEWSB) has been a viable option for the completion of the standard model for over thirty years. Precision electroweak studies indicate that the new strong interactions that break EW symmetry cannot be a scaled-up copy of QCD. Building viable models of DEWSB is difficult without a detailed understanding of such non-QCD gauge theories which still confine and break chiral symmetry. We review past difficulties of studying these theories using lattice methods and describe recent progress, focusing on the role of approximate infrared conformal symmetry.
169 - J. Hirn , A. Martin 2007
New strong interactions at the LHC may exhibit a richer structure than expected from simply rescaling QCD to the electroweak scale. In fact, a departure from rescaled QCD is required for compatibility with electroweak constraints. To navigate the space of possible scenarios, we use a simple framework, based on a 5D model with modifications of AdS geometry in the infrared. In the parameter space, we select two points with particularly interesting phenomenology. For these benchmark points, we explore the discovery of triplets of vector and axial resonances at the LHC.
Recent data from LHC13 by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ have indicated disagreement with all the Pomeron model predictions by the COMPETE Collaboration (2002). On the other hand, as recently demonstrated by Martynov and Nicolescu (MN), the new $sigma_{tot}$ datum and the unexpected decrease in the $rho$ value are well described by the maximal Odderon dominance at the highest energies. Here, we discuss the applicability of Pomeron dominance through fits to the textit{most complete set} of forward data from $pp$ and $bar{p}p$ scattering. We consider an analytic parametrization for $sigma_{tot}(s)$ consisting of non-degenerated Regge trajectories for even and odd amplitudes (as in the MN analysis) and two Pomeron components associated with double and triple poles in the complex angular momentum plane. The $rho$ parameter is analytically determined by means of dispersion relations. We carry out fits to $pp$ and $bar{p}p$ data on $sigma_{tot}$ and $rho$ in the interval 5 GeV - 13 TeV (as in the MN analysis). Two novel aspects of our analysis are: (1) the dataset comprises all the accelerator data below 7 TeV and we consider textit{three independent ensembles} by adding: either only the TOTEM data (as in the MN analysis), or only the ATLAS data, or both sets; (2) in the data reductions to each ensemble, uncertainty regions are evaluated through error propagation from the fit parameters, with 90 % CL. We argument that, within the uncertainties, this analytic model corresponding to soft Pomeron dominance, does not seem to be excluded by the textit{complete} set of experimental data presently available.
103 - K. Akiba , M. Akbiyik , M. Albrow 2016
The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.
We test several BFKL-like evolution equations for unintegrated gluon distributions against forward-central dijet production at LHC. Our study is based on fitting the evolution scenarios to the LHC data using the high energy factorization approach. Thus, as a by-product, we obtain a set of LHC-motivated unintegrated gluon distributions ready to use. We utilize this application by calculating azimuthal decorrelations for forward-central dijet production and compare with existing data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا