Do you want to publish a course? Click here

Electric and Magnetic Gating of Rashba-Active Weak Links

306   0   0.0 ( 0 )
 Added by Ora Entin-Wohlman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a one-dimensional weak-link wire the spin-orbit interaction (SOI) alone cannot generate a nonzero spin current. We show that a Zeeman field acting in the wire in conjunction with the Rashba SOI there does yield such a current, whose magnitude and direction depend on the direction of the field. When this field is not parallel to the effective field due to the SOI, both the charge and the spin currents oscillate with the length of the wire. Measuring the oscillating anisotropic magnetoresistance can thus yield information on the SOI strength. These features are tuned by applying a magnetic and/or an electric field, with possible applications to spintronics.



rate research

Read More

We show that a carbon nanotube can serve as a functional electric weak link performing photo-spintronic transduction. A spin current, facilitated by strong spin-orbit interactions in the nanotube and not accompanied by a charge current, is induced in a device containing the nanotube weak link by circularly polarized microwaves. Nanomechanical tuning of the photo-spintronic transduction can be achieved due to the sensitivity of the spin-orbit interaction to geometrical deformations of the weak link.
We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the superconducting leads is observed in both regimes and in the Kondo regime a narrow zero bias peak interpreted as a proximity induced supercurrent persist in Coulomb blockade diamonds with Kondo resonances.
The Josephson effect is one of the most studied macroscopic quantum phenomena in condensed matter physics and has been an essential part of the quantum technologies development over the last decades. It is already used in many applications such as magnetometry, metrology, quantum computing, detectors or electronic refrigeration. However, developing devices in which the induced superconductivity can be monitored, both spatially and in its magnitude, remains a serious challenge. In this work, we have used local gates to control confinement, amplitude and density profile of the supercurrent induced in one-dimensional nanoscale constrictions, defined in bilayer graphene-hexagonal boron nitride van der Waals heterostructures. The combination of resistance gate maps, out-of-equilibrium transport, magnetic interferometry measurements, analytical and numerical modelling enables us to explore highly tunable superconducting weak links. Our study opens the path way to design more complex superconducting circuits based on this principle such as electronic interferometers or transition-edge sensors.
By coupling a superconducting weak link to a microwave resonator, recent experiments probed the spectrum and achieved the quantum manipulation of Andreev states in various systems. However, the quantitative understanding of the response of the resonator to changes in the occupancy of the Andreev levels, which are of fermionic nature, is missing. Here, using Bogoliubov-de Gennes formalism to describe the weak link and a general formulation of the coupling to the resonator, we calculate the shift of the resonator frequency as a function of the levels occupancy and describe how transitions are induced by phase or electric field microwave drives. We apply this formalism to analyze recent experimental results obtained using circuit-QED techniques on superconducting atomic contacts and semiconducting nanowire Josephson junctions.
Exciting phenomena may emerge in non-centrosymmetric two-dimensional (2D) electronic systems when spin-orbit coupling (SOC) interplays dynamically with Coulomb interactions, band topology, and external modulating forces, etc. Here, we report illuminating synergetic effects between SOC and Stark in centrosymmetric few-layer black arsenic (BAs), manifested as giant Rashba valley splitting and exotic quantum Hall states (QHS) reversibly controlled by electrostatic gating. The unusual finding is rooted in the puckering square lattice of BAs, in which heavy $4p$ orbitals form highly asymmetric $Gamma$ valley with the $p_{z}$ symmetry and $D$ valleys of the $p_{x}$ origin, located at the Brillouin zone (BZ) center and near the time reversal invariant momenta of $X$, respectively. When the structure inversion symmetry is broken by perpendicular electric field, giant Rashba SOC is activated for the $p_{x}$ bands to produce strong spin-polarized $D^{+}$ and $D^{-}$ valleys related by time-reversal symmetry, coexisting with weak $Gamma$ Rashba bands constrained by the $p_{z}$ symmetry. Intriguingly, strong Stark effect shows the same $p_{x}$-orbital selectiveness for $D$, collectively shifting the valence band maximum of $D^{pm}$ valleys to exceed the $Gamma$ pockets. Such an orchestrating effect between SOC and Stark allows us to realize gate-tunable spin valley manipulations for 2D hole gas, as revealed by unconventional magnetic field triggered even-to-odd transitions in QHS. For electron doping, the quantization of the $Gamma$ Rashba bands is characterized by peculiar density-dependent transitions in band topology from two parabolic valleys to a unique inner-outer helical structure when charge carrier concentrations increase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا