Do you want to publish a course? Click here

On the design of experiments based on plastic scintillators using Geant4 simulations

99   0   0.0 ( 0 )
 Added by German Ros Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plastic scintillators are widely used as particle detectors in many fields, mainly, medicine, particle physics and astrophysics. Traditionally, they are coupled to a photo-multplier (PMT) but now silicon photo-multipliers (SiPM) are evolving as a promising robust alternative, specially in space born experiments since plastic scintillators may be a light option for low Earth orbit missions. Therefore it is timely to make a new analysis of the optimal design for experiments based on plastic scintillators in realistic conditions in such a configuration. We analyze here their response to an isotropic flux of electron and proton primaries in the energy range from 1 MeV to 1 GeV, a typical scenario for cosmic ray or space weather experiments, through detailed GEANT4 simulations. First, we focus on the effect of increasing the ratio between the plastic volume and the area of the photo-detector itself and, second, on the benefits of using a reflective coating around the plastic, the most common technique to increase light collection efficiency. In order to achieve a general approach, it is necessary to consider several detector setups. Therefore, we have performed a full set of simulations using the highly tested GEANT4 simulation tool: several parameters have been analyzed such as the energy lost in the coating, the deposited energy in the scintillator, the optical absorption, the fraction of scintillation photons that are not detected, the light collection at the photo-detector, the pulse shape and its time parameters and finally, other design parameters as the surface roughness, the coating reflectivity and the case of a scintillator with two decay components. This work could serve as a guide on the design of future experiments based on the use of plastic scintillators.



rate research

Read More

We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4 - 10 MeV) detectors capable of making sensitive observations. A fast scintillator- based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits the rejection of background via time-of-flight (ToF) discrimination. The Solar Compton Telescope (SolCompT) prototype was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2 x 2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of Co-60 embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 hours at a float altitude of ~123,000 feet. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise for future gamma-ray instruments.
B-modes are special patterns in cosmic microwave background (CMB) polarization. The detection of them is a smoking-gun signature of primordial gravitational waves. The generic strategy of the CMB polarization experiments is to employ a large number of polarimeters for improving the statistics. The Q/U Imaging ExperimenT-II (QUIET-II) has been proposed to detect the B-modes using the worlds largest coherent polarimeter array (2,000 channels). An unique detection technique using QUIETs polarimeters, which is a modula- tion/demodulation scheme, enables us directly extracting the polarization signal. The extracted signal is free from non- polarized components and intrinsic 1/f noise. We developed a data readout system with on-board demodulation functions for the QUIET-II experiment. We employed a master clock strategy. This strategy guarantees phase matching between the modulation by the polarimeters and the demodulation by ADC modules. The single master generates all carrier clocks and distributes them to each module. The developed electronics, clock modules, and the ADC modules fulfill requirements. Tests with a setup similar to that of the real experiment proved that the system works properly. The performance of all system components are validated to be suitable for B-mode measurements.
248 - M. Barbera 2014
The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESAs Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m 2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.
111 - Yuhong Yu , Zhiyu Sun , Hong Su 2017
he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $times$ 82 cm. It can identify the charge states for relativistic ions from H to Fe, and the detector efficiency for Z=1 particles can reach 0.9999. The PSD has been successfully launched with DAMPE on Dec. 17, 2015. In this paper, the design, the assembly, the qualification tests of the PSD and some of the performance measured on the ground have been described in detail.
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons and ions in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100GeV to 100 TeV). Plastic Scintillator Detector (PSD) is one of the four payloads in DAMPE, providing e/{gamma} separation and charge identification up to Iron. An ion beam test was carried out for the Qualification Model of PSD in CERN with 40GeV/u Argon primary beams. The Birks saturation and charge resolution of PSD were investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا