Do you want to publish a course? Click here

Switchable Adhesion Actuator for Amphibious Climbing Soft Robot

69   0   0.0 ( 0 )
 Added by Yichao Tang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Climbing soft robots are of tremendous interest in both science and engineering due to their potential applications in intelligent surveillance, inspection, maintenance, and detection under environments away from the ground. The challenge lies in the design of a fast, robust, switchable adhesion actuator to easily attach and detach the vertical surfaces. Here, we propose a new design of pneumatic-actuated bioinspired soft adhesion actuator working both on ground and under water. It is composed of extremely soft bilayer structures with an embedded spiral pneumatic channel resting on top of a base layer with a cavity. Rather than the traditional way of directly pumping air out of the cavity for suction in hard polymer-based adhesion actuator, we inflate air into the top spiral channel to deform into a stable 3D domed shape for achieving negative pressure in the cavity. The characterization of the maximum shear adhesion force of the proposed soft adhesion actuator shows strong and rapid reversible adhesion on multiple types of smooth and semi-smooth surfaces. Based on the switchable adhesion actuator, we design and fabricate a novel load-carrying amphibious climbing soft robot (ACSR) by combining with a soft bending actuator. We demonstrate that it can operate on a wide range of foreign horizontal and vertical surfaces including dry, wet, slippery, smooth, and semi-smooth ones on ground and also under water with certain load-carrying capability. We show that the vertical climbing speed can reach about 286 mm/min (1.6 body length/min) while carrying over 200g object (over 5 times the weight of ACSR itself) during climbing on ground and under water. This research could largely push the boundaries of soft robot capabilities and multifunctionality in window cleaning and underwater inspection under harsh environment.

rate research

Read More

97 - Yichao Tang , Jie Yin 2018
Bilayer bending based soft actuators are widely utilized in soft robotics for locomotion and object gripping. However, studies on soft actuators based on bilayer doming remain largely unexplored despite the often-observed dome-like shapes in undersea animals such as jellyfish and octopus suction cup. Here, based on the simplified model of bending-induced doming of circular bilayer plates with mismatched deformation, we explore the design of soft doming actuator upon pneumatic actuation and its implications in design of multifunctional soft machines. The bilayer actuator is composed of patterned embedded pneumatic channel on top for radial expansion and a solid elastomeric layer on bottom for strain-limiting. We show that both the cavity volume and bending angle at the rim of the actuated dome can be controlled by tuning the height gradient of the pneumatic channel along the radial direction. We demonstrate its potential multifunctional applications in swimming, adhesion, and gripping, including high efficient jellyfish-inspired underwater soft robots with locomotion speed of 84 cm/min and rotation-based soft grippers with low energy cost by harnessing the large rim bending angle, as well as octopus-inspired soft adhesion actuators with strong and switchable adhesion force of over 10 N by utilizing the large cavity volume.
Recently, suction-based robotic systems with microscopic features or active suction components have been proposed to grip rough and irregular surfaces. However, sophisticated fabrication methods or complex control systems are required for such systems, and robust attachment to rough real-world surfaces still remains a grand challenge. Here, we propose a fully soft robotic gripper, where a flat elastic membrane is used to conform and contact parts or surfaces well, where an internal negative pressure exerted on the air-sealed membrane induces the suction-based gripping. 3D printing in combination with soft molding techniques enable the fabrication of the soft gripper. Robust attachment to complex 3D and rough surfaces is enabled by the surface-conformable soft flat membrane, which generates strong and robust suction at the contact interface. Such robust attachment to rough and irregular surfaces enables manipulation of a broad range of real-world objects, such as an egg, lime, and foiled package, without any physical damage. Compared to the conventional suction cup designs, the proposed suction gripper design shows a four-fold increase in gripping performance on rough surfaces. Furthermore, the structural and material simplicity of the proposed gripper architecture facilitates its system-level integration with other soft robotic peripherals, which can enable broader impact in diverse fields, such as digital manufacturing, robotic manipulation, and medical gripping applications.
Soft actuators allow to transform external stimuli to mechanical deformations. Because of their deformational response to external magnetic fields, magnetic gels and elastomers represent ideal candidates for such tasks. Mostly, linear magnetostrictive deformations, that is, elongations or contractions along straight axes are discussed in this context. In contrast to that, we here suggest to realize a twist actuator that responds by torsional deformations around the axis of the applied magnetic field. For this purpose, we theoretically investigate the overall mechanical response of a basic model system containing discrete magnetizable particles in a soft elastic matrix. Two different types of discrete particle arrangements are used as starting conditions in the nonmagnetized state. These contain globally twisted anisotropic particle arrangements on the one hand, and groups of discrete helical-like particle structures positioned side by side on the other hand. Besides the resulting twist upon magnetization, we also evaluate different other modes of deformation. Our analysis supports the construction of magnetically orientable and actuatable torsional mixing devices in fluidic applications or other types of soft actuators that initiate relative rotations between different components.
The concept of a nano-actuator that uses ferroelectric switching to generate enhanced displacements is explored using a phase-field model. The actuator has a ground state in the absence of applied electric field that consists of polarized domains oriented to form a flux closure. When electric field is applied, the polarization reorients through ferroelectric switching and produces strain. The device is mechanically biased by a substrate and returns to the ground state when electric field is removed, giving a repeatable actuation cycle. The mechanical strains which accompany ferroelectric switching are several times greater than the strains attained due to the piezoelectric effect alone. We also demonstrate a second design of actuator in which the displacements are further increased by the bending of a ferroelectric beam. Phase-field modelling is used to track the evolution of domain patterns in the devices during the actuation cycle, and to study the design parameters so as to enhance the achievable actuation strains.
85 - Ali Momeni , Kasra Rouhi , 2021
Optical wave-based computing has enabled the realization of real-time information processing in both space and time domains. In the past few years, analog computing has experienced rapid development but mostly for a single function. Motivated by parallel space-time computing and miniaturization, we show that reconfigurable graphene-based metasurfaces offer a promising path towards spatiotemporal computing with integrated functionalities by properly engineering both spatial- and temporal-frequency responses. This paper employs a tunable graphene-based metasurface to enable analog signal and image processing in both space and time by tuning the electrostatic bias. In the first part of the paper, we propose a switchable analog computing paradigm in which the proposed metasurface can switch among defined performances by selecting a proper external voltage for graphene monolayers. Spatial isotropic differentiation and edge detection in the spatial channel and first-order temporal differentiation and metasurface-based phaser with linear group-delay response in the temporal channel are demonstrated. In the second section of the paper, simultaneous and parallel spatiotemporal analog computing is demonstrated. The proposed metasurface processor has almost no static power consumption due to its floating-gate configuration. The spatial- and temporal-frequency transfer functions (TFs) are engineered by using a transmission line (TL) model, and the obtained results are validated with full-wave simulations. Our proposal will enable real-time parallel spatiotemporal analog signal and image processing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا