No Arabic abstract
Unravelling the physical mechanisms behind the organisation of lipid domains is a central goal in cell biology and membrane biophysics. Previous studies on cells and model lipid bilayers featuring phase-separated domains found an intricate interplay between the membrane geometry and its chemical composition. However, the lack of a model system with simultaneous control over the membrane shape and conservation of its composition precluded a fundamental understanding of curvature-induced effects. Here, we present a new class of multicomponent vesicles supported by colloidal scaffolds of designed shape. We find that the domain composition adapts to the geometry, giving rise to a novel antimixed state. Theoretical modelling allowed us to link the pinning of domains by regions of high curvature to the material parameters of the membrane. Our results provide key insights into the phase separation of cellular membranes and on curved surfaces in general.
Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As a model system to study adsorption-mediated interactions, we study the collective behavior of micrometric particles adhered to a lipid vesicle. We estimate the colloidal interactions using a maximum likelihood analysis of particle trajectories. When the particles are highly wrapped by a tense membrane, we observe strong long-range attractions with a typical binding energy of 150 $k_B T$ and significant forces extending a few microns.
Experiments on supported lipid bilayers featuring liquid ordered/disordered domains have shown that the spatial arrangement of the lipid domains and their chemical composition are strongly affected by the curvature of the substrate. Furthermore, theoretical predictions suggest that both these effects are intimately related with the closed topology of the bilayer. In this work, we test this hypothesis by fabricating supported membranes consisting of colloidal particles of various shapes lying on a flat substrate. A single lipid bilayer coats both colloids and substrate, allowing local lipid exchange between them, thus rendering the system thermodynamically open, i.e. able to exchange heat and molecules with an external reservoir in the neighborhood of the colloid. By reconstructing the Gibbs phase diagram for this system, we demonstrate that the free-energy landscape is directly influenced by the geometry of the colloid. In addition, we find that local lipid exchange enhances the pinning of the liquid disordered phase in highly curved regions. This allows us to provide estimates of the bending moduli difference of the domains. Finally, by combining experimental and numerical data, we forecast the outcome of possible experiments on catenoidal and conical necks and show that these geometries could greatly improve the precision of the current estimates of the bending moduli.
Soft bodies flowing in a channel often exhibit parachute-like shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes --- which are classified as bullet, croissant and parachute --- in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.
We investigated the phase separation of dioleoylphosphatidylserine (DOPS) and dipalmitoylphosphatidylcholine (DPPC) in giant unilamellar vesicles in hypotonic solution using fluorescence and confocal laser scanning microscopy. Although phase separation in charged lipid membranes is generally suppressed by the electrostatic repulsion between the charged headgroups, osmotic stress can promote the formation of charged lipid domains. Interestingly, we observed three-phase coexistence even in DOPS/DPPC binary lipid mixtures. The three phases were DPPC-rich, dissociated DOPS-rich, and nondissociated DOPS-rich phases. The two forms of DOPS were found to coexist owing to the ionization of the DOPS headgroup, such that the system could be regarded as quasi-ternary. The three formed phases with differently ionized DOPS domains were successfully identified experimentally by monitoring the adsorption of positively charged particles. In addition, coarse-grained molecular dynamics simulations confirmed the stability of the three-phase coexistence. Attraction mediated by hydrogen bonding between protonated DOPS molecules and reduction of the electrostatic interactions at the domain boundaries stabilized the three-phase coexistence.
Necks are features of lipid membranes characterized by an uniquley large curvature, functioning as bridges between different compartments. These features are ubiquitous in the life-cycle of the cell and instrumental in processes such as division, extracellular vesicles uptake and cargo transport between organelles, but also in life-threatening conditions, as in the endocytosis of viruses and phages. Yet, the very existence of lipid necks challenges our understanding of membranes biophysics: their curvature, often orders of magnitude larger than elsewhere, is energetically prohibitive, even with the arsenal of molecular machineries and signalling pathways that cells have at their disposal. Using a geometric triality, namely a correspondence between three different classes of geometric objects, here we demonstrate that lipid necks are in fact metastable, thus can exist for finite, but potentially long times even in the absence of stabilizing mechanisms. This framework allows us to explicitly calculate the forces a corpuscle must overcome in order to penetrate cellular membranes, thus paving the way for a predictive theory of endo/exo-cytic processes.