Do you want to publish a course? Click here

Learning to Refine Human Pose Estimation

131   0   0.0 ( 0 )
 Added by Mihai Fieraru
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Multi-person pose estimation in images and videos is an important yet challenging task with many applications. Despite the large improvements in human pose estimation enabled by the development of convolutional neural networks, there still exist a lot of difficult cases where even the state-of-the-art models fail to correctly localize all body joints. This motivates the need for an additional refinement step that addresses these challenging cases and can be easily applied on top of any existing method. In this work, we introduce a pose refinement network (PoseRefiner) which takes as input both the image and a given pose estimate and learns to directly predict a refined pose by jointly reasoning about the input-output space. In order for the network to learn to refine incorrect body joint predictions, we employ a novel data augmentation scheme for training, where we model hard human pose cases. We evaluate our approach on four popular large-scale pose estimation benchmarks such as MPII Single- and Multi-Person Pose Estimation, PoseTrack Pose Estimation, and PoseTrack Pose Tracking, and report systematic improvement over the state of the art.



rate research

Read More

In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a pose sample simulator to augment training samples in virtual camera views, which further improves our model generalizability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusion. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page: url{https://github.com/zczcwh/DL-HPE}
Human pose estimation deeply relies on visual clues and anatomical constraints between parts to locate keypoints. Most existing CNN-based methods do well in visual representation, however, lacking in the ability to explicitly learn the constraint relationships between keypoints. In this paper, we propose a novel approach based on Token representation for human Pose estimation~(TokenPose). In detail, each keypoint is explicitly embedded as a token to simultaneously learn constraint relationships and appearance cues from images. Extensive experiments show that the small and large TokenPose models are on par with state-of-the-art CNN-based counterparts while being more lightweight. Specifically, our TokenPose-S and TokenPose-L achieve $72.5$ AP and $75.8$ AP on COCO validation dataset respectively, with significant reduction in parameters ($downarrow80.6%$; $downarrow$ $56.8%$) and GFLOPs ($downarrow$ $75.3%$; $downarrow$ $24.7%$). Code is publicly available.
In this paper, we propose an efficient human pose estimation network (DANet) by learning deeply aggregated representations. Most existing models explore multi-scale information mainly from features with different spatial sizes. Powerful multi-scale representations usually rely on the cascaded pyramid framework. This framework largely boosts the performance but in the meanwhile makes networks very deep and complex. Instead, we focus on exploiting multi-scale information from layers with different receptive-field sizes and then making full of use this information by improving the fusion method. Specifically, we propose an orthogonal attention block (OAB) and a second-order fusion unit (SFU). The OAB learns multi-scale information from different layers and enhances them by encouraging them to be diverse. The SFU adaptively selects and fuses diverse multi-scale information and suppress the redundant ones. This could maximize the effective information in final fused representations. With the help of OAB and SFU, our single pyramid network may be able to generate deeply aggregated representations that contain even richer multi-scale information and have a larger representing capacity than that of cascaded networks. Thus, our networks could achieve comparable or even better accuracy with much smaller model complexity. Specifically, our mbox{DANet-72} achieves $70.5$ in AP score on COCO test-dev set with only $1.0G$ FLOPs. Its speed on a CPU platform achieves $58$ Persons-Per-Second~(PPS).
215 - Wei Feng , Wentao Liu , Tong Li 2019
Human-object interactions (HOI) recognition and pose estimation are two closely related tasks. Human pose is an essential cue for recognizing actions and localizing the interacted objects. Meanwhile, human action and their interacted objects localizations provide guidance for pose estimation. In this paper, we propose a turbo learning framework to perform HOI recognition and pose estimation simultaneously. First, two modules are designed to enforce message passing between the tasks, i.e. pose aware HOI recognition module and HOI guided pose estimation module. Then, these two modules form a closed loop to utilize the complementary information iteratively, which can be trained in an end-to-end manner. The proposed method achieves the state-of-the-art performance on two public benchmarks including Verbs in COCO (V-COCO) and HICO-DET datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا