Do you want to publish a course? Click here

Dispersionless Hirota equations and the genus 3 hyperelliptic divisor

111   0   0.0 ( 0 )
 Added by E. V. Ferapontov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Equations of dispersionless Hirota type have been thoroughly investigated in the mathematical physics and differential geometry literature. It is known that the parameter space of integrable Hirota type equations in 3D is 21-dimensional and the action of the natural equivalence group Sp(6, R) on the parameter space has an open orbit. However the structure of the `master-equation corresponding to this orbit remained elusive. Here we prove that the master-equation is specified by the vanishing of any genus 3 theta constant with even characteristic. The rich geometry of integrable Hirota type equations sheds new light on local differential geometry of the genus 3 hyperelliptic divisor, in particular, the integrability conditions can be viewed as local differential-geometric constraints that characterise the hyperelliptic divisor uniquely modulo Sp(6, C)-equivalence.



rate research

Read More

We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of heavenly type equations arising in self-dual gravity. As a by-product of our approach we derive an involutive system of relations characterising symplectic Monge-Ampere equations in any dimension. Moreover, we demonstrate that in 4D the requirement of integrability is equivalent to self-duality of the conformal structure defined by the characteristic variety of the equation on every solution, which is in turn equivalent to the existence of a dispersionless Lax pair. We also give a criterion of linerisability of a Hirota type equation via flatness of the corresponding conformal structure, and study symmetry properties of integrable equations.
185 - Jia-Ming Liou 2016
Let $X$be a complex hyperelliptic curve of genus two equipped with the canonical metric $ds^2$. We study mean field equations on complex hyperelliptic curves and show that the Gaussian curvature function of $(X,ds^2)$ determines an explicit solution to a mean field equation.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approaches. After recalling the derivation of Lowner equations based on complex analysis we review one- and multi-variable reductions of dispersionless integrable hierarhies (dKP, dBKP, dToda, and dDKP). The one-vaiable reductions are described by solutions of differe
363 - B.G.Konopelchenko , F.Magri 2006
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.
In the series of recent publications we have proposed a novel approach to the classification of integrable differential/difference equations in 3D based on the requirement that hydrodynamic reductions of the corresponding dispersionless limits are `inherited by the dispersive equations. In this paper we extend this to the fully discrete case. Our only constraint is that the initial ansatz possesses a non-degenerate dispersionless limit (this is the case for all known Hirota-type equations). Based on the method of deformations of hydrodynamic reductions, we classify discrete 3D integrable Hirota-type equations within various particularly interesting subclasses. Our method can be viewed as an alternative to the conventional multi-dimensional consistency approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا