No Arabic abstract
Consider the following process on a network: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. This process is known as the 2-Choices dynamics and is arguably the most basic non-trivial opinion dynamics modeling voting behavior on social networks. Despite its apparent simplicity, 2-Choices has been analytically characterized only on restricted network classes---under assumptions on the initial configuration that establish it as a fast majority consensus protocol. In this work, we aim at contributing to the understanding of the 2-Choices dynamics by considering its behavior on a class of networks with core-periphery structure, a well-known topological assumption in social networks. In a nutshell, assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. Then, depending on the strength of the cut between the core and the periphery, a phase-transition phenomenon occurs: Either the cores opinion rapidly spreads among the rest of the network, or a metastability phase takes place, in which both opinions coexist in the network for superpolynomial time. The interest of our result is twofold. On the one hand, by looking at the 2-Choices dynamics as a simplistic model of competition among opinions in social networks, our theorem sheds light on the influence of the core on the rest of the network, as a function of the cores connectivity toward the latter. On the other hand, we provide one of the first analytical results which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network. Finally, we validate our theoretical predictions with extensive experiments on real networks.
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which core nodes are much more ordered than peripheral nodes. Interestingly, the susceptibility shows double peaks at two distinct temperatures. We find that, if the connections between core and periphery increase linearly with network size, the first peak does not exhibit any size-dependent effect, and the second one diverges in the limit of infinite network size. Otherwise, if the connections between core and periphery scale sub-linearly with the network size, both peaks of the susceptibility diverge as power laws in the thermodynamic limit. This suggests the appearance of a double transition phenomenon in the Ising model for the latter case. Moreover, we develop a mean-field theory that agrees well with the simulations.
Core-periphery networks are structures that present a set of central and densely connected nodes, namely the core, and a set of non-central and sparsely connected nodes, namely the periphery. The rich-club refers to a set in which the highest degree nodes show a high density of connections. Thus, a network that displays a rich-club can be interpreted as a core-periphery network in which the core is made up by a number of hubs. In this paper, we test the resilience of networks showing a progressively denser rich-club and we observe how this structure is able to affect the network measures in terms of both cohesion and efficiency in information flow. Additionally, we consider the case in which, instead of making the core denser, we add links to the periphery. These two procedures of core and periphery thickening delineate a decision process in the placement of new links and allow us to conduct a scenario analysis that can be helpful in the comprehension and supervision of complex networks under the resilience perspective. The advantages of the two procedures, as well as their implications, are discussed in relation to both network effciency and node heterogeneity.
Core-periphery structure is an emerging property of a wide range of complex systems and indicate the presence of group of actors in the system with an higher number of connections among them and a lower number of connections with a sparsely connected periphery. The dynamics of a complex system which is interacting on a given graph structure is strictly connected with the spectral properties of the graph itself, nevertheless it is generally extremely hard to obtain analytic results which will hold for arbitrary large systems. Recently a statistical ensemble of random graphs with a regular block structure, i.e. the ensemble of equitable graphs, has been introduced and analytic results have been derived in the computationally-hard context of graph partitioning and community detection. In this paper, we present a general analytic result for a ensemble of equitable core-periphery graphs, yielding a new explicit formula for the spectral density of networks with core-periphery structure.
Intermediate-scale (or `meso-scale) structures in networks have received considerable attention, as the algorithmic detection of such structures makes it possible to discover network features that are not apparent either at the local scale of nodes and edges or at the global scale of summary statistics. Numerous types of meso-scale structures can occur in networks, but investigations of such features have focused predominantly on the identification and study of community structure. In this paper, we develop a new method to investigate the meso-scale feature known as core-periphery structure, which entails identifying densely-connected core nodes and sparsely-connected periphery nodes. In contrast to communities, the nodes in a core are also reasonably well-connected to those in the periphery. Our new method of computing core-periphery structure can identify multiple cores in a network and takes different possible cores into account. We illustrate the differences between our method and several existing methods for identifying which nodes belong to a core, and we use our technique to examine core-periphery structure in examples of friendship, collaboration, transportation, and voting networks.
Core-periphery structure, the arrangement of a network into a dense core and sparse periphery, is a versatile descriptor of various social, biological, and technological networks. In practice, different core-periphery algorithms are often applied interchangeably, despite the fact that they can yield inconsistent descriptions of core-periphery structure. For example, two of the most widely used algorithms, the k-cores decomposition and the classic two-block model of Borgatti and Everett, extract fundamentally different structures: the latter partitions a network into a binary hub-and-spoke layout, while the former divides it into a layered hierarchy. We introduce a core-periphery typology to clarify these differences, along with Bayesian stochastic block modeling techniques to classify networks in accordance with this typology. Empirically, we find a rich diversity of core-periphery structure among networks. Through a detailed case study, we demonstrate the importance of acknowledging this diversity and situating networks within the core-periphery typology when conducting domain-specific analyses.