No Arabic abstract
We demonstrate the role of measurement back-action of a coherent spin environment on the dynamics of a spin (qubit) coupled to it, by inducing non-classical (Quantum Random Walk like) statistics on its measurement trajectory. We show how the long-life time of the spin-bath allows it to correlate measurements of the qubit over many repetitions. We have used Nitrogen Vacancy centers in diamond as a model system, and the projective single-shot readout of the electron spin at low temperatures to simulate these effects. We show that the proposed theoretical model, explains the experimentally observed statistics and their application for quantum state engineering of spin ensembles towards desired states.
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole parameter space, reveals a wide range of different regimes, ranging from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the practical usefulness of the different approaches.
Hybrid spin-optomechanical quantum systems offer high flexibility, integrability and applicability for quantum science and technology. Particularly, on-chip surface acoustic waves (SAWs) can efficiently drive spin transitions in the ground states (GSs) of atomic-scale, color centre qubits, which are forbidden in case of the more frequently used electromagnetic fields. Here, we demonstrate that strain-induced spin interactions within their optically excited state (ES) can exceed by two orders of magnitude the ones within the GS. This gives rise to novel physical phenomena, such as the acoustically induced coherent spin trapping (CST) unvealed here. The CST manifests itself as the spin preservation along one particular direction under the coherent drive of the GS and ES by the same acoustic field. Our findings provide new opportunities for the coherent control of spin qubits with dynamically generated strain fields that can lead towards the realization of future spin-acoustic quantum devices.
A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle the qubits which are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.
In this work we present a large-deviation analysis for the counting statistics of atomic spontaneous emissions continuously detected in finite-bandwidth non-Markovian environment. We show that the statistics of the spontaneous emissions depends on the response time of the detector, which can result in big differences such as dynamical phase transition. This feature excludes the idea of regarding the spontaneous emissions as detection-free objective events. Possible experiment is briefly discussed in connection with the state-of-the-art optical cavity set-up.
We construct photon modulated coherent states of a generalized isotonic oscillator by expanding the newly introduced superposed operator through Weyl ordering method. We evaluate the parameter $A_3$ and the $s$-parameterized quasi probability distribution function to confirm the non - classical nature of the states. We also calculate the identities related with the quadrature squeezing to explore the squeezing property of the states. Finally, we investigate the fidelity between the photon modulated coherent states and coherent states to quantify the non-Gaussianity of the states. The constructed states and their associated non - classical properties will add further knowledge on the potential.