Do you want to publish a course? Click here

Heavy Particle Signatures in Cosmological Correlation Functions with Tensor Modes

310   0   0.0 ( 0 )
 Added by Takahiro Kubota
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We explore the possibility to make use of cosmological data to look for signatures of unknown heavy particles whose masses are on the order of the Hubble parameter during the time of inflation. To be more specific we take up the quasi-single field inflation model, in which the isocurvaton $sigma $ is supposed to be the heavy particle. We study correlation functions involving both scalar ($zeta $) and tensor ($gamma $) perturbations and search for imprints of the $sigma$-particle effects. We make use of the technique of the effective field theory for inflation to derive the $zeta sigma $ and $gamma zeta sigma $ couplings. With these couplings we compute the effects due to $sigma $ to the power spectrum $langle zeta zeta rangle $ and correlations $langle gamma^{s} zeta zeta rangle$ and $langle gamma^{s_{1}} gamma ^{s_{2}} zeta zeta rangle $, where $s$, $s_{1}$ and $s_{2}$ are the polarization indices of gravitons. Numerical analyses of the $sigma$-mass effects to these corrlations are presented. It is argued that future precise observations of these correlations could make it possible to measure the $sigma$-mass and the strength of the $zeta sigma$ and $gamma zeta sigma$ couplings. As an extension to the $N$-graviton case we also compute the correlations $langle gamma ^{s_{1}} cdots gamma ^{s_{N}} zeta zeta rangle $ and $langle gamma ^{s_{1}} cdots cdots gamma ^{s_{2N}} zeta zeta rangle $ and their $sigma$-mass effects. It is suggested that larger $N$ correlation functions are useful to probe larger $sigma$-mass .

rate research

Read More

Tensor models are generalizations of matrix models and as such, it is a natural question to ask whether they satisfy some form of the topological recursion. The world of unitary-invariant observables is however much richer in tensor models than in matrix models. It is therefore a priori unclear which set of observables could satisfy the topological recursion. Such a set of observables was identified a few years ago in the context of the quartic melonic model by the first author and Dartois. It was shown to satisfy an extension of the topological recursion introduced by Borot and called the blobbed topological recursion. Here we show that this set of observables is present in arbitrary tensor models which have non-vanishing couplings for the quartic melonic interactions. It satisfies the blobbed topological recursion in a universal way, i.e. independently of the choices of the other interactions. In combinatorial terms, the correlation functions describe stuffed maps with colored boundary components. The specifics of the model only appear in the generating functions of the stuffings and the blobbed topological recursion only requires them to have well-defined $1/N$ expansions. The spectral curve is a disjoint union of Gaussian spectral curves, with the cylinder function receiving an additional holomorphic part. This result is achieved via a perturbative rewriting of tensor models as multi-matrix models due to the first author, Lionni and Rivasseau. It is then possible to formally integrate all degrees of freedom except those which enter the topological recursion, meaning interpreting the Feynman graphs as stuffed maps. We further provide new expressions to relate the expectations of $U(N)^d$-invariant observables on the tensor and matrix sides.
Correlation functions of the simplest multi-particle state will be presented using distilled quark propagators. The I=2 pi-pi state can be simulated without computing disconnected diagrams and thus is the simplest two-particle state that can be studied with quark sources placed on a single time-slice. We study the quality of the signals of this pi-pi correlation function using the quark-smearing guided distillation method. Results will be presented for pi-pi correlation functions computed on dynamical, anisotropic lattices.
We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا