Do you want to publish a course? Click here

Egocentric 6-DoF Tracking of Small Handheld Objects

113   0   0.0 ( 0 )
 Added by Rohit Pandey
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Virtual and augmented reality technologies have seen significant growth in the past few years. A key component of such systems is the ability to track the pose of head mounted displays and controllers in 3D space. We tackle the problem of efficient 6-DoF tracking of a handheld controller from egocentric camera perspectives. We collected the HMD Controller dataset which consist of over 540,000 stereo image pairs labelled with the full 6-DoF pose of the handheld controller. Our proposed SSD-AF-Stereo3D model achieves a mean average error of 33.5 millimeters in 3D keypoint prediction and is used in conjunction with an IMU sensor on the controller to enable 6-DoF tracking. We also present results on approaches for model based full 6-DoF tracking. All our models operate under the strict constraints of real time mobile CPU inference.



rate research

Read More

Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of reactive grasping by proposing a method for unknown object tracking, grasp point sampling and dynamic trajectory planning. Our object tracking method combines Siamese Networks with an Iterative Closest Point approach for pointcloud registration into a method for 6-DoF unknown object tracking. The method does not require further training and is robust to noise and occlusion. We propose a robotic manipulation system, which is able to grasp a wide variety of formerly unseen objects and is robust against object perturbations and inferior grasping points.
We present a novel multi-attentional convolutional architecture to tackle the problem of real-time RGB-D 6D object pose tracking of single, known objects. Such a problem poses multiple challenges originating both from the objects nature and their interaction with their environment, which previous approaches have failed to fully address. The proposed framework encapsulates methods for background clutter and occlusion handling by integrating multiple parallel soft spatial attention modules into a multitask Convolutional Neural Network (CNN) architecture. Moreover, we consider the special geometrical properties of both the objects 3D model and the pose space, and we use a more sophisticated approach for data augmentation during training. The provided experimental results confirm the effectiveness of the proposed multi-attentional architecture, as it improves the State-of-the-Art (SoA) tracking performance by an average score of 34.03% for translation and 40.01% for rotation, when tested on the most complete dataset designed, up to date,for the problem of RGB-D object tracking.
In this paper we present Latent-Class Hough Forests, a method for object detection and 6 DoF pose estimation in heavily cluttered and occluded scenarios. We adapt a state of the art template matching feature into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. We train with positive samples only and we treat class distributions at the leaf nodes as latent variables. During testing we infer by iteratively updating these distributions, providing accurate estimation of background clutter and foreground occlusions and, thus, better detection rate. Furthermore, as a by-product, our Latent-Class Hough Forests can provide accurate occlusion aware segmentation masks, even in the multi-instance scenario. In addition to an existing public dataset, which contains only single-instance sequences with large amounts of clutter, we have collected two, more challenging, datasets for multiple-instance detection containing heavy 2D and 3D clutter as well as foreground occlusions. We provide extensive experiments on the various parameters of the framework such as patch size, number of trees and number of iterations to infer class distributions at test time. We also evaluate the Latent-Class Hough Forests on all datasets where we outperform state of the art methods.
This paper proposes a novel concept to directly match feature descriptors extracted from 2D images with feature descriptors extracted from 3D point clouds. We use this concept to directly localize images in a 3D point cloud. We generate a dataset of matching 2D and 3D points and their corresponding feature descriptors, which is used to learn a Descriptor-Matcher classifier. To localize the pose of an image at test time, we extract keypoints and feature descriptors from the query image. The trained Descriptor-Matcher is then used to match the features from the image and the point cloud. The locations of the matched features are used in a robust pose estimation algorithm to predict the location and orientation of the query image. We carried out an extensive evaluation of the proposed method for indoor and outdoor scenarios and with different types of point clouds to verify the feasibility of our approach. Experimental results demonstrate that direct matching of feature descriptors from images and point clouds is not only a viable idea but can also be reliably used to estimate the 6-DOF poses of query cameras in any type of 3D point cloud in an unconstrained manner with high precision.
We consider a single-query 6-DoF camera pose estimation with reference images and a point cloud, i.e. the problem of estimating the position and orientation of a camera by using reference images and a point cloud. In this work, we perform a systematic comparison of three state-of-the-art strategies for 6-DoF camera pose estimation, i.e. feature-based, photometric-based and mutual-information-based approaches. The performance of the studied methods is evaluated on two standard datasets in terms of success rate, translation error and max orientation error. Building on the results analysis, we propose a hybrid approach that combines feature-based and mutual-information-based pose estimation methods since it provides complementary properties for pose estimation. Experiments show that (1) in cases with large environmental variance, the hybrid approach outperforms feature-based and mutual-information-based approaches by an average of 25.1% and 5.8% in terms of success rate, respectively; (2) in cases where query and reference images are captured at similar imaging conditions, the hybrid approach performs similarly as the feature-based approach, but outperforms both photometric-based and mutual-information-based approaches with a clear margin; (3) the feature-based approach is consistently more accurate than mutual-information-based and photometric-based approaches when at least 4 consistent matching points are found between the query and reference images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا